Student 1 – name

Student 2 – name

Group

Date/Time

Table nbr.

Worksheet - Lab 2 rev 7e

1. Study of a rectangular wave with a DC offset.

a)
$$U_{P}$$
= f= U_{DC} =

$$C_{X_optim} = [s/div] C_{Y_optim} =$$

[V/div]
$$C_{X cal} =$$

[s/div]
$$C_{Y cal} =$$

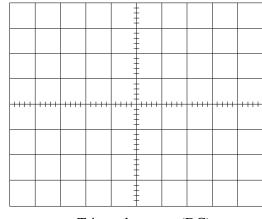
$$N_{X} \tau =$$

[div];
$$N_{Y_Upp} =$$

$$N_{Y_Upp} =$$

[ms];
$$U_{PP} =$$

$$N_{Y_Udc} = [div]$$

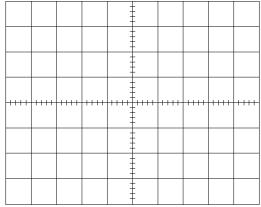

b)
$$\varepsilon_T$$
 =

$$\varepsilon_{Upp} =$$

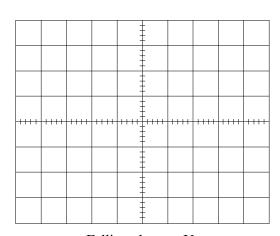
c)
$$\varepsilon_{2T} =$$

$$\varepsilon_{2Upp} =$$

Explanation for error:


Triangular wave (DC)

2. Adjusting oscilloscope trigger:


- a) $U_{Tmin} =$
- [V] $U_{Tmax} =$
- [V] *Explanations*:

- $U_{T 50\%} =$
- [V]

b) Draw the positions of the arrows!

Rising slope U_{T1} =

Falling slope U_{T2} =

3. Study of rectangular signals:

a)
$$U_{P3} =$$

$$[V] T_3 =$$

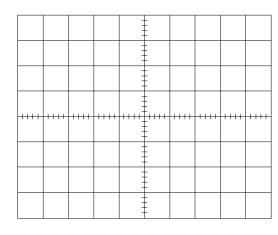
 $\mathbf{C}_X =$

$$C_X =$$
 [s/div] $C_Y =$

b)

$$T = [ms] \tau =$$

$$\eta_{meas} =$$


$$\varepsilon_{\eta} = [\%]$$

 $b.3 U_{\rm CC} =$

b.4 $U_{\rm CC\ calc}$ =

Explanation:

4. Measurement of the rise time of a rectangular signal:

[ns];

$$a)$$
 $t_1 =$

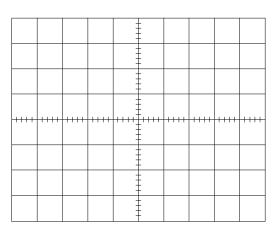
$$\mathbf{t}_2 =$$

$$t_{rise} =$$

$$t_{rise} =$$
 [ns]; b) $t_{rise} =$


c) Explanation:

Study of the oscilloscope with 2 inputs: *5. 5.*


$$U_T =$$

[V]
$$f =$$

b)

Sum signal

Difference signal

6 Study of trigger signal sources

a) a.1 Explanation:

a.2 Explanation:

a.3 Explanation:

a.4 Explanation:

$$U_P =$$

$$U_P = [V] f =$$

[Hz]

b) b.1 Remark:

b.2 Explanation:

c) c.1 Explanation:

c.2 Explanation:

$$f_{\text{mains}} = [Hz]$$

7. Trigger AUTO/NORM

a) NORM:
$$f_{sincro} =$$

AUTO:
$$f_{sincro} =$$

b)
$$U_{DC AUTO meas} =$$

$$U_{DC NORM meas} =$$