tudent 1 – name and surname		Student 2 – name and surname	Group	Date	Table no.
		Worksheet 6 rev 5e			
1. Measur	ing resistances)	with the LCR-meter			
$R_1=$	$\Delta R_1 =$	$\varepsilon_{R1}[\%]=$			
$R_2=$	$\Delta R_2 =$	$\varepsilon_{R2}[\%] =$			
$R_3=$	$\Delta R_3 =$	$\varepsilon_{R3}[\%]=$			
	ing the resistand	ce of a wire			
a) R _{cuadri} =					
•	•	$-R_{\text{quadri}}$)/ $R_{\text{quadri}} \cdot 100 =$			
Explanation	is:				

c) R_{connection wires}=

d) R wire' = R_{bipolar} -R_{conn.wires} =
$$\epsilon_R$$
' [%]=(Rwire' - R_{quadri})/R_{quadri}·100=

Explanation regarding the error from d compared to b:

Explanation regarding the measurement from \boldsymbol{a} :

3. Measuring capacitors and inductors

a) Capacitor 1 type: $C_{s1}=$ $D_1=$ $Q_1=1/D_1=$ $C_{p1}=$ Capacitor 2 type: $C_{s2}=$ $D_2=$ $Q_2=1/D_2=$ $C_{p2}=$ Explanations:

Type with Q max:

 R_{s1} = R_{p1} = R_{s2} = R_{p2} = Explanations:

b) $L_s = Q = L_p = Q_{calc} = R_s = Explanation for <math>R_S$:

Remarks regarding the Q factor of L and C:

4. Measuring a RC group

a) RC s	eries	independent	component	s R=	$C_S=$	D=		
F	C_S	C_P	D	Q=1/D	Q_{calc}	R_S	R_P	$X_C =$
								1/ωCs
1KHz								
100KH ₇								

b) RC j	parallel	independen	t componen	ts R=	$C_P=$	D=		
F	C_S	C_P	D	Q=1/D	Q_{calc}	R_S	R_P	$X_C =$
								1/ωC _P
1KHz								
100KHz								

c)

- Explanation Q:
- Explanaton C in group vs. independent C:
- Explanation for different frequencies:
- 5. Measuring resistances using the DC bridge
 Draw the bridge, write down the values of the resistances, to
 identify them, and mark the diagonals 1-2 and 3-4:

 $E_{\text{measured}} =$

a)
$$R_1 = R_2 = R_3 =$$

 $R_{40 \text{ measured}} = R_{40 \text{ calculated}} = \epsilon_{R40} [\%] = (R_{40 \text{ meas}} - R_{40 \text{ calc}}) / R_{40 \text{ calc}} \cdot 100 = R_{40 \text{ meas}} - R_{40 \text{ calc}}) / R_{40 \text{ calc}} \cdot 100 = R_{40 \text{ meas}} - R_{40 \text{ calc}} \cdot 100 = R_{40 \text{ meas}} - R_{40 \text{ calc}} \cdot 100 = R_{40 \text{ meas}} - R_{40 \text{ calc}} \cdot 100 = R_{40 \text$

Explanations:

b)
$$U_{d1}=20mV$$
 (The voltmeter in diag. 1-2)

 U_{d2} = (The voltmeter in diag. 3-4)

Experimental maximum sensitivity diagonal:

Justification:

$$A_{1-2} = S_{1-2} = A_{3-4} = S_{3-4} =$$

Theoretical A for maximum S =

Theoretical maximum sensitivity diagonal: