PAC-MAN

EECE 474 -Team 1

July 24, 2002

PAC-MAN

Submitted to:
Dr. W.G. Dunford

July 24, 2002

Submitted by:
Pauline Pham (#44064988)
Carol Tai (#78264991)
Johnson Bao (#64704984)
Christopher Chou (#82812991)
Jimmy Huang (#4798998)

Table of Contents

R LIE S =T m
R e T 1
ADSEEACE ..ttt iii
(00O N Ao o (VT ol IR T
.0 (O S T v 2

D1 M OE O M QU S s 2

P 2 PCB Mounts 3

22 = 3
YR 6
[B1 Motor Selection 6

[b.2 Y/ @@ T @ o) I !

4.0 Radio Frequency APPRIICALIONc...viiiiiiiiiiiieiiiiiiiie i eiieeecesseeeesessseeessisnseeeesns 9
A1l RF CoNSIAerationS.....eieeeeieeriiieiiiieiiiieeiiieiiiieiiiiee i i iiieeeiieeeiieeeiieeeieeens 9
[FZ WITE eSS TNUT CONt Ol O . oo 9

M2 T ENCOAING SCREME TOTIC.........oooroeeroresorereerererereerereerereeeerereerereeeerens 10

1.2.2 ENCOEr AN D OO0 O i s 11

4221 Frror detection and filtering 12

B2.3 REMOGUIES. ... ooeeeceeeeceeeeceeeeeeeeeeeeeneeeneneeesnennnennnnnnenes 13

1 Wall detection 16

b.2 DO COUNTING SEBNSOT ... veeeeeeeeeseeeeeeseeeseessesssseesseessseesseeesseesseessseesseeenses 18

b.3 PAC-M AN TIACKING ... uueiiiiiiiiiiiiiieiiiiiiieieesesseessessseeseassseeesesssseesssssereeeanes 19

b.4 COoNtaCt SENSON . .ueeiiiiiiiiiiieiiiii et ettt ettt e e, 21

R B 2o [F=/o] - Y SSPR 21

b.0 ICI OCONTI Ol€ AN SOTTWAI €. s 23
Bl PAC- AN RODO b 23

1.1 Obstacle Sensors 25

T2 LCDDISPIAY ..ot 26

%.3 N A 26|

14 27

SO O L0 T T 27

5.1.5 GhOSt CONLACE SENSONeeiiiviiiiiiiiie e cceiveee e e eesnre e e esanees 29

5.1.6 Maze DOt SENSON ..oiiieeeeieiiiiiiiiiieieiiei et 29

B2 GO RODOT. . oo 30

P.2.1 BEACON SENSONcceevveeeeveeeeeieeeeeeeeeeeeeeeeeeeeeeeeereeereeeeereeerereeeeeeeeeeeeees 31

2.0 aze 35
7.1 Physical Dimension 35

[(.2 DOUS ... 36

I 33
1 M otor 38

b.2 (@0 1T 1 = 55 30

B.3 VL Z . s 38

B4 REQUIGIOIS. . i, 39

Recommendations

APPENDICES

APPENDIX A: Photo Gallery
APPENDIX B: PCB Layouts
APPENDIX C: Expense Report
APPENDIX D: Gantt Chart
APPENDIX E: Source Code

List of Tables

Tlable 1. ENCOding SCHOMe e 11
Table 2. RE signal format for Pac-Man movement 27

able 3. List of parameters needed to control MOtor SPEED..........ccvvvvvveveeveeriveeriiieernneen, 2/
Table 4. Truth table of the MemOry DEVICEc..uuuiiieiiiieeiieeeeee e eeeeee e 37

List of Figures

FIOUrE 1. ATUMINUM COTNEY ...ttt et e e et e e et et e ee eee e saeeennesereeeas 2 |
SR 2|
TOUTE 3. IVTOTOT IVTOUTTIS. ... veeeoeeseeeseeesseessseesseessneessnesseeesnesseeesseessnesssnessenssnessnessenensnnrseeees 3
IQUIE 4, PCUB MOUNI.......ccuviciieitieiiiieitiecieeeteeetieeiteeeieeeeseesseeeteessseeseesseessseesseesseesseesseenns 3
FiQUIE 5. ChasSiS BOOY ..eeiiiiiisii ittt 4
igure 6. Pac-Man South-west view 4 |
Elgure AL = T Y21 2 |
1QUIE 8. TODVIBW ... oo é—l
T s e N = ", 5]
fgure 10. 56MU048B2U0 I2VDT Unipolar SIEPPEr MOTON ..o 7
igure 11. Pin Assignments and internal circuitry of UCNS80A4..........ccccuvvevevveiiiicnnnnneeen. 8
Figure 12. Wireless Input CONtrollerviieeieieeiiieeiiieeisceieeei e 10
IQUTE L3, ENCOOING SCNEME TOTIT .. veeveerreresreesreeesseesseeesseesssesseesssessseessssesseesssnrsseesssnesees 10
igure 14, M C145026 Encoder BIOCK DIA0raMuuvuvuvveveeiiiiiiieieeeieeeeeeeeeeeeeeeeeeeeeeeeens 11
Figure 15. MC145027 Decoder Block Diagram . 12
igure 16. Encoder and Decoder transmission protocol 13
El gure 17, TransSmITer MOCQUIE.............ccoiiiuiiiiiiiiiiic e 14
1QUIE 18, RECEIVEr MOOUIE ..o oo oot oAttt 14]
igure 19. Transmitter BIOCK DIaQram ... eeeeeeeiieeeeeiiiieeeeiiiieeeiiiiieeeiiiiieeeiiiieeeeiiiieeeenns 14
FIQUre 20. RECEIVEN BTOCK DIOTAITI ...cveeveeeeveeeaesneseerseesnesseeseesseessnsseesensenssnnsensensseesees 15
T Ty el o B K 1/
FiQUIE 22, Wall SENSOT ... corriieiriesiseeiestesesteseesessessssestesessessesessesessessasessessasesssessessssesssseases 17 |
TOUTE 23 WAl SENSOT TITCUIT .ooveeeocsesssesseesseeeseessnesseesseessnessessssnessssssnessesrssnesseesssnesiees 17
1gure 24, DOU COUNTING CITCUIT........ccuveeerieeveeetieereeeseeeeeesseeesseesseesseesseesseesseessseesseesnnes 13
A N 20
igure 26, Beacon Receiver Circuit 20
1QUIE Z7. TR BEACON CITCUIT.eeveeieeeeeeeeeeieeseesnsseessenssesseeseessanseesseessessensseessenseenseeses 20
FIOUPE 28. CONEACT SENSON ...ttt eiiiiiiteeiesieseeessssssseessessessessasssesssesssssessisssseesssns 21
igUre 29, LCD diSPIAY.ccuueeiieeeiieiiiieeiiieeiiiee ittt 22
rgure 30. Architectural MOJel OF PaC-VTaN SOTIWEIEeecoeeceesieesinsessnessnnessnessenssnenneees 24
igure 31. Pin assignmentST0r PaC-Maneueeveeeeeeeees 25
Figure 32. Model of interface between PIC and obstacle sensors........ccceeeeveeiceeeeeeeeeeee.. 26
fgure 33. Model of interface between PIC and LTD OISPIAY -.oooovroeveereeereereereeieeeeeenes 26
igure 36, Model of interface between PIC and stepper motor drivers 29

FFigure 37. Model of interface between PIC and Ghost contact sensor............................. 29

igure 38. Model of interface between PIC and maze dot SeNSor ...veeeeeeeeieeiieeeiineennnee. 29
Tgure 39. Architectural model OFf PaC- AN SOTTWETEccccceeieeieeeinssessnesinsseassnesneseenes 30
igure 40. Pin assl gnments for the Ghost ... 31
~ =
igure 42 an’r beacon meaqumpn'rq of Par‘ Man nnqn‘mn 32
Igure 43. Left beacon measurements of Pac-Man position...............cccvcvecveneceieeennnnnee. 32
Figure 44. Example of the maze fast flooding algorithm e, 34
igure 45, Maze Design 35
igure 46. Dot Circuitry Tor the Maze (TOr ONE dOL)ecveeveeeeeereesieeieeseeseesseesenseesees 36
-igure 47. Timing diagram of the Switch (including CD4066, resistor, and capacitor) .. 37
igure 48. LM2575 Circuit SChematiCuiieeeiieeeiieeeiieiiiieiiieeiieeeiieeiiieee i, 39
Figure 29, TMZ575 CITCUIT BIOCK DIGOTAIM ..o cereeseeeeseeneeseeseenesseseesacseeseeneenes 39|

Abstract

The EECE474 Pac-Man project is arobotic counterpart of the computer game, Pac-Man.
Asinthe original Pac-Man game, the Pac-Man robot, controlled by a player viaa RF
link, moves around the maze collecting LED “dots” while avoiding contact with the
Ghost, which is an autonomous robot capable of tracking Pac-Man’s location in the
maze. The microcontrollers onboard the robots are responsible for reading the wall
sensors and controlling the stepper motors to perform precision turning and stopping. To
simulate the dots being “ eaten” by Pac-Man, the maze dot modules, equipped with light
sensors are capabl e of turning off the LEDs once Pac-Man passes through. The number
of dots collected by Pac-Man is shown on the LCD display. The tracking mechanismis
achieved by mounting IR receivers onto the Ghost to detect Pac-Man’s IR beacon
signature and using such information to compute the shortest path to reach Pac-Man in
the maze. Contact sensors are also used to detect collisions between Ghost and Pac-Man.

1.0 Introduction

The objective of our EECE474 project is to design a Pac-Man game involving aremote
control system that is suitable for children who are six years old and above. The idea of
this project comes from the computer game Pac-Man. The rules and the features of our
project are similar to the computer game.

Our goals are to implement two wireless and motor running robots and to set up a game
setting, while maintaining the same features as in the computer game. The features
include the fact that Pac-Man keeps score of the number of dots collected, the Ghost
traces Pac-Man and finds the shortest path to it, and that the Ghost travel at a speed faster
than Pac-Man.

The project involves two robots — Pac-Man and Ghost. In general, the objective of the
gameisfor playersto control Pac-Man’s movements within the maze with awireless
controller. Pac-Man must eat all the dots on the maze and avoid contact with the Ghost at
the sametime. Pac-Man isgiven threelives. If Pac-Man comesinto contact with the
Ghost three times before eating all the dots, the game is pronounced over.

Our Pac-Man robot consists of the following systems:
1) an RF system that receives directional instructions from users
2) awall detection system
3) ascore keeping system
4) amotor system
5) acontact sensor that detect contacts with the Ghost.

The Ghost is an autonomous robot that is:
1) ableto detect walls
2) toautomatically traverse the maze
3) tolocate and catch Pac-Man
4) to detect contact with Pac-Man.

Our project is divided into two main components — hardware and software. Both the
hardware and the software are further broken down into severa individual subsystems.
Each subsystem is tested and implemented separately, and integrated together to
construct our final project. The testing results and the design processes of each
subsystem are discussed in detail in the following sections. In addition, problems
encountered and the solutions are described.

2.0 Chassis

The design objective of the chassisis to enable Pac-Man and the Ghost to
maneuver easily in the maze. Since most of the robots weight comes from the
batteries and motors, in order to keep the weight to a minimum, the chassis was
designed to be as lightweight and small as possible. Therefore, 16-gauge sheet
aluminum was chosen to be the main building material for the chassis. The
chassisis designed to have three modules: motor mounts, PCB mounts, and the
body. This design makes the robot easy to assemble and disassemble. The detail
design of each module is described in the following sections.

2.1 Motor Mounts

The robot is designed to accomplish standing 90 degree or 180 degree turnsin the
maze. In order to do this, the two motors are positioned in the middle of each side
of the robot, so ssmply rotating the two motors in opposite directions achieves the
standing turn. To mount the motors on to the chassis body, we made a L-shape
aluminum plate (a corner) to attach the motors to the chassis (see Figure 1).

Figure 1. Aluminum Corner Figure 2. Wheel

The wheels we used, shown in Figure 2, are plastic disks made by the machinist
according to the specified dimension. The dimensions of the wheels were chosen
so it gives the motor and the dot-counting sensor just enough clearance off the
ground. The wheel clamps straight on to the shaft of the motor using a setscrew,
so it has aoneto one gear ratio. Thisiswhy the wheels have to be made just
right, otherwise the robot would be moving faster than the desired speed.

o o
i I
M ,.-F.-
A Tk i
1 :f--l. ___
e LM o
-""n_l'a. P,
x'ﬁ? -

Figure 3. Motor Mounts

2.2 PCB Mounts

In the original design, the PCBs were to be mounted in layers using screws and
Spacers at each corner. However, after looking at the design carefully, we found
this mounting method to be inconvenient in terms of accessing and debugging the
PCBs. Therefore, we decided to switch to the wooden slots that we are currently
using. This mounting mechanism enables us to slide each of the layersin and out
individually for debugging. Just like the motors, the wooden PCB mounts are
attached to the main body using an aluminum corner. (See Figure 4)

=

Figure 4. PCB Mount

23 Body

The chassis body, as shown in Figure 5, is actually quite simple; it consists of a
10cm x 10cm aluminum plate, two standing castersin the front, and two ball

castersin the back. For any two wheel robot, casters are needed to keep the robot
in balance, but usually only one ball caster is needed in the back. For Pac-Man
and the Ghost, because the LED dots are planted at the center of each lane, the
casters were moved away from the center in order to accommodate the LEDs and
sensors. Moreover, having only one caster placed off center may cause an uneven
drag and affect the movement of the robot. Therefore, we placed two ball casters
in the back to keep the robot balanced. The front standing casters are there to
prevent the robot from tilting forward on the brake.

Figure5. Chassis Body

o

=L | =
wi | f

Figure 6. Pac-Man South-west view Figure 7. Front view

=Ea
L
N
i

RS
[— —]
| = o
W "
of LH -:_:-_J _@_

Figure 8. Top view Figure9. Sideview

3.0 Motors

In order to have Pac-Man and the Ghost traverse through the maze efficiently, the
movements of the robot need to be precise and easy to control. Our design requires the
robots to make near perfect 90 degree and 180 degree turns on a touch button command.
Therefore, it is critical to have the right motors for the purpose and a control mechanism,
which makes it easy for the microprocessor.

3.1 Motor Selection

For the robots' drive motor, we had to choose from three types of motors: DC,
servo, and stepper motors. DC motors are capable of providing high speed and
torque for the robot, but they require the proper gearboxes and shaft encoders to
achieve the desirable control. Asfor the servomotors, they have a much simpler
control mechanism, but their speed is limited, and in most cases, they are not
capable of the full rotation needed for driving purposes.

As aresult, we decided to settle with stepper motors. Stepper motors are easy to
control with the help of proper translation logic and it can be used to drive the
robot without any modifications. However, there is one disadvantage that we did
not find out until we started working with them. Although the stepper motors are
capable of full rotation, in most cases, they are not designed to provide enough
torque for driving small robots. Fortunately, there are special high torque stepper
motors that are designed for driving applications. For our robots, we decided to
use 12V DC unipolar stepper motors, the 55M048B2U from Thomson Industries
Inc.; Figure 10 below shows the dimension of the motor.

fp————— 70, Il G ——————— B 5440, M —— | 55,5 g
3. 125,005 17304, 015 .00
] P
i— L V| | —— 1.7Eall 25 ———wr] -
2 E25..D05 07041010
24.29,0. 13 5780 T el
0674, 005
vl il_]
5 2 iy *:-_-_ e el WD T
= #2170
HAX
a0, OO U_ =
2l 14 -0 05 'Ul' H]
+,000 304.8:12.7
243 -.002 17, M0a. 50
w000 i
a8, 245 -0 DI —
*.000o 122433
& 5458 - 000 TR
SIRIFFED

Figure 10. 55M048B2U 12VDC Unipolar Stepper Motor

3.2 Motor Control

Opposite from DC motors, stepper motors have an armature built out of
permanent magnets, and surrounded by sets el ectromagnets that are activated on
demand. By activating different sets of coilsin a particular sequence, we can
move the armature from one position to the next to create the rotation required.
The activation sequence can be generated by programming the microprocessor or
by logic devices, such as the L297 stepper motor controller, which transates
direction and clock signal into corresponding sequences.

Both Pac-Man and the Ghost are driven by two motors (left and right), whichis
controlled by the UCN5804 unipolar stepper-motor trandator/driver from Allegro
Microsystems Inc. Figure 11 below shows the pin assignment and internal
circuitry of the UCN5804.

OUTPUT SUPPLY
OUTPUT
Kep EMAELE
OUTPUT o DIRECTION
GROUND GROUND
GROUND GROUND
OUTPUT ¢ STEP INPUT
Koo HALF-STEP
OUTPUT, [& | OME-PHASE

Figure 11. Pin Assignments and internal circuitry of UCN5804

The motors we used can be controlled by combining the L297 with a Darlington
transistor array. However, the UCN5804 not only integrated the trandlation logic
with the Darlington transistors, it is aso capable of sinking twice as much current
(1.25A) than regular Darlington arrays (600mA). Therefore, we chose the
UCN5804 as our motor controller to eliminate extra circuitry and to lighten the
load on the microprocessor.

4.0 Radio Frequency Application

Since one of the goalsin this project is to implement a user controlled Pac-Man, it was
essential to have the Pac-Man robot move freely through the maze without having
communication wires from the controller suspending fromit. Therefore, radio frequency
was introduced into our project in order to make the communication between Pac-Man
and its user controller wireless. When dealing with radio frequency applications, the
transmission protocol and noise factors were key issues taken into consideration in our
eguipment selection and design.

4.1 RF Consider ations

We initially considered a two-way communication link between Pac-Man and the
controller. Thiswould have allowed us to control Pac-Man from the PC on the
downlink and it would allow Pac-Man to send useful information to the PC (such
as data for dot counting and counting lives) on the uplink. We also considered a
wireless communication link between Pac-Man and the Ghost. Thiswould have
allowed us to send Pac-Man'’ s position coordinates to the Ghost so that the Ghost
can track Pac-Man down. However, due to budget restraints and in order to avoid
additional programming and synchronization issues between the transmitter and
the receiver modules, we decided to use one-way communication between the
controller and Pac-Man only and implement the hardware required to count dots
and lives on Pac-Man. By simplifying our RF requirements, we were able to
design a controller without having to interface it with the PC or a separate
microcontroller.

4.2 WireessInput Controller

A wirelessinput controller was designed to specifically control the movements of
Pac-Man. The controller consists of three subsystems: the encoding scheme
logic, the encoder and decoder, and the RF modules. Four momentary SPDT
(single-pole-double-throw) pushbuttons were selected as the control buttons such
that each time a user pushes a button, the output would go high, elseit remains
low at al times. From there, an algorithm was devised to encode the output into a
specific scheme. This output is then sent to the encoder whereit is sent serially to
the RF transmitter module. The RF transmitter module sends the data off at
418MHz to the receiver module on Pac-Man. The datais then transferred to the
decoder and outputted through three pins to the microcontroller. The following
diagram describes the operation of the wireless controller.

@ﬁm > Logic > 4to 1 bit > RF Transmitter Y

ﬁ encoder Module =

To Pac-Man

SPDT Pushbuttons

Wireless Input Controller

RF Receiver 410 1 bit Micro-
— Y‘ Module | gecoder | ¥ controller
From controller

Pac-Man

Figure 12. Wireless Input Controller

4.2.1 Encoding schemelogic

There are four movements required to control Pac-Man in the maze: up,

down, right, and left. The following logic was designed to meet these
specifications.

5V
+V
(o]

R GHT uic

?ﬁ])) LSB
DO

el

Figure 13. Encoding scheme logic

As each button is pressed, the following outputs are sent to the encoder
chip.

10

Table 1. Encoding scheme

Up 100
L eft 101
Right 110
Down 111

The most significant bit was selected to act as an interrupt signal for the
micro-controller so that it goes high each time a button is pushed.

4.2.2 Encoder and Decoder

The encoder and decoder chip used in this project is Motorola' s
MC145026 encoder and MC145027 decoder chips. See Figure 14 and
Figure 15 for their block diagrams. Since more than one 474 group was
using RF modules at 418MHz, these chips were selected for our
application because they performed the necessary error checking and
filtering required. In addition, they provided parallel-to-serial and serial-
to-parallel data conversion, which was a requirement for the RF modules
(the RF modules transmit and receive serial data only).

R Rre

C1C
TE 12 13

| WFIN p DATA SELECT
oli] oscuuaton VDER A |12 Dy
o %
| J BUFFER

4
EMALLE —

REMG CCUNTER AND 1-0F-8 DECODER j

9 B 7 & &5 4 3 2 A

: 2 i
o

o 5
o =

as o % TRIMARY
i DETECTOR

ABDE 0 n 3]
]

e _ﬁ ¥pp = PN 16
Ve =PN B

X%

Figure 14. MC145026 Encoder Block Diagram

11

-

1

R
'

1
LATCH

=

LN TR
LOGIC
T

5

SEUENGER IR

] A8 T EHFTREGIST

3 2 1

E H DIATA ‘ g
—| ExtRacTOR Din

B

y . . Cz Voo = PIN 16
10 Vg5 =FING
j“l”n““"- ™
= Rz =

Figure 15. MC145027 Decoder Block Diagram

4.2.2.1 Error detection and filtering

The encoder chip contains nine bits of information. Thefirst five
bits contain the address of the encoder and the other remaining
four bits contain the data bits. These nine bits of information are
sent serially to the RF transmitter module. The RF transmitter
module then sends the serial data asynchronously at 418MHz to
the receiver module. For this project, only three out of the four
data bitswere used. The fourth bit was |eft opened. The decoder
receives the serial data viathe RF receiver module, unscrambles
the data and checks to see if two consecutive addresses are
matched to the local address of the decoder. Secondly, it checksto
seeif the four data bits match the last valid datareceived. If both
conditions are met, the data bits are outputted to the
microcontroller.

Both encoder and decoder chip contain an internal RC oscillator.
Since the RF modules were tested and found to operate best for
input frequencies up to 2kHz, the encoder and decoder clock
frequencies were set to approximately 1.7kHz. Thisresulted in an
output frequency of approximately 420Hz to the RF modules. As
seen in the figure below, each data bit generated from the encoder

12

isheld for several clock cycles and each transition period amounts
to half aclock cycle. Since both chips were set to operate with the
same clock frequency, the decoder is able to unscramble and
synchronize the data received to its own internal clock. Figure 16
illustrates how the datais unscrambled at the decoder. Note that
VT (valid transmission) only goes high once two sets of words
have been received from the encoder.

EECORER
-
AN HAN ST

L 3 |
|
e o o o . s . s e | L L G

_nunnnnyummnmrmnrw,.mmmwrmnnmrmmmm mrmrmrnr
5 |—,1—u—Lrlj-._Lrl_ﬁ_l—u—m5 Jm_n_

LA

Figure 16. Encoder and Decoder transmission protocol

423 RF Modules

The RF module was selected based on reliability, size, and easiness of
implementation. RF modules made by Abacom, Melex, Ming
Microsystems, Ramsey, Linx and RF solutions were researched, however,
the modules produced by Linx Technologies was chosen based on
previous project success and because it required the least amount of
external circuitry. Inaddition, since our controller’s case had asize
restraint, the Linx transmitter module was ideal due to its small packaging.
See Figure 17 and Figure 18 for their schematics.

13

1.18 In. A85i0n.

= z
= < .
281N gg E%E A2 in.
1 pin spacing: ~

80 1n.

Figure 17. Transmitter Module

1.89 in. 0.286 in.
. o [:
0.7\ £ 5 o|[083in.
W
58 E238.k
a3 c3ad0 J
1]”]’ pin spacing: 0.1 in]””l'ﬂ[‘;_:Hw
1.2010n.

Figure 18. Receiver Module

The Linx modules use precision SAW (Surface Acoustic Wave)
techniques and FM/FSK (Frequency Modul ation/Frequency Shift Keying)
modulation. Figure 19 and Figure 20 show the internal operation of the
RF modules. As mentioned before, the Linx modules require no external
circuitry other than an external antenna. A 418MHz ¥4 wave whip antenna
was selected as it was recommended to work best with these modules. In
addition, the modules recommended that a slow data rate be selected since
it increases the performance of the RF modules. As mentioned above, we
chose to send a420Hz signal to the RF transmitter module.

ﬁm;ﬂ.:um Vee 589 YVOLT
RINHT - RIS R I -
REOUT | ... roci-fat et | DATA
i V==t ~ o BE T
GND l l l l DVOLT
L -

Figure 19. Transmitter Block Diagram

14

hf"h T i PR
&t -« el
w120 - E o ksl Moz d- SWOLT

—
ban treiiazal
Pk Lo et by F——
pLE D TECT
|. -
REM o [' . AF
-.I IF g i Y L
I.E. ‘ el B [
- opive caib m o
Bt 4 A Tl
AT GWOILT
- i

Figure 20. Receiver Block Diagram

The Linx modules have the capability of sending analog or digital data at
distances greater than 500 ft. We tested these modules by sending a signal
from the function generator from one end of the 474 room to the other
end. The modules received the signal instantaneously and mirrored the
signal exactly aswe varied the frequency. We chose not to test the
modules at greater distances since it was unnecessary to do so for our
specific application.

15

50 Sensors

Severa different types of sensors are used to achieve the following functionalities in the
Pac-Man project:

1) Wall detection — Pac-Man and Ghost should be able to maneuver around the
maze without hitting or scraping the walls, and meanwhile detect openings in the
maze. Given the configuration of the robots and the maze, this functionality
requires distance sensors that have good resolution within a 15 cm range.

2) Dot counting—The “Dots’ in the Pac-Man game is realized by the floor
mounted LEDs in the maze. Pac-Man should be able to distinguish between the
bare floor and an LED light source as it passes over them even when it is not
centered within the track. Asin the computer game, the dots disappear after eaten
by Pac-Man. Our LEDs should aso turn off immediately after it has been
detected.

3) Pac-Man location tracking — Ghost should be able to locate Pac-Man from a
give distance within the maze. This functionality requires sensors that have a
wide detection angle (approximately 45 degrees) and along detection range
(approximately 120 cm).

4) Contact - When Pac-Man and Ghost physically make contact, both robots
should be able to detect the event.

Given the above functional requirements, the following sensor designs are investigated as
possible solutions.

51 Wall detection

Wefirst considered the Sharp GP2d12 IR ranger module (Figure 21), which is
equipped with an infrared transmitter and receiver pair. Several features makes
GP2D12 an attractive candidate — 1) Small packaging (0.75in x 0.5in) which

hel ps keep the size of our robot under control, 2) GP2D12’' s analog output (0.25V
to 2.45V) is easily interfaced with the PIC microcontroller’ sinternal A-D
converter, and 3) high immunity to ambient light.

16

Figure 21. GP2D12

However, it also has asignificant drawback. The accurate sensing rangeis
between 80cm to 10cm with the output gradually increasing as the obstacle gets
closer. Oncethedistanceis closer than 10cm, the output begins to drop. This
poses a serious problem since our robot will not be able to distinguish between a
straightaway (wall beyond 10 cm), and awall 1cm away.

After extensive research, we decided that a sensor design using a pair of CdS
photo-resistor and a LED is best suited for our needs. Figure 22 illustratesits
operation and Figure 23 isthe circuit drawing for the sensor.

Vi
5V

o - v
CaSPhatorasigtorn — Q
-::_"-\-\. - - i
= | < cds
I\"':'E:[fq_'_"-- 7 LEb -'é 10k 40%
-'-"-P. -_'-__—_, -___‘___-\-
1" |~
=L | _— e
|
L"“-n. WV RL)
MED __—~ — 100 47k
— __.—'"- -_"-\-____
" -
e
Figure 22. Wall Sensor Figure 23. Wall Sensor Circuit

The resistance of the CdS photoresistor isinversely related to the surrounding
light intensity. Asthe light intensity increases, the resistance of the CdS resistor
drops. We therefore incorporate the photoresistor in avoltage divider, creating a
varying voltage level at the output node as shown in Figure 23. Asthe sensor
approaches the wall, the LED lights up the wall surface. Depending on the
amount of light reflected into the CdS cell, the output voltage gradually increases
as the sensor moves closer to the wall.

17

Initial testing of the Figure 22 set-up showed promising results: the voltage output
varied from 2.5V when sensor was right in front of the wall to around 1.2V when
there was no wall in front of it. However upon further testing, we discovered that
varying ambient light intensity on the maze wall resulted in a 0.5V output
deviation at the desired stopping distance (wall clearance) of 3 cm. To reduce the
interference from the ambient light, we decided to replace the original red LED
with asuper white LED which has a much greater intensity. Testing revealed that
at the desired stopping distance the sensor output aready reached 3V, which
means that the ambient light now contributes to much less of the overall reflected
intensity. Testing also showed that although the output is now consistent with
different wall lighting, the output at the desired range still varies around 0.3V
from one sensor to another due to the dlight differences in the photoresistors. In
order to make the sensing distance more accurate across all sensors, software
calibration is performed before each round of the game. To reduce the current
consumption of the LEDs we decided to modify the circuit to alow modulation to
the LED power supply. Instead of leaving the LEDs on al the time, the
microcontroller only turns them on right before it polls the sensor data.

5.2 Dot Counting Sensor

Dot counting is an important feature for the Pac-Man game. It allows Pac-Man to
detect the dots, which are red LEDs, on the maze and to keep score of the number
of dotsthat it has collected. The circuit is simple and consists of one sensor,
which is a photoresistor, three resistors and an op-amp as shown in Figure 24 in
the following.

Voo Voo
1 20k é)RS
:,; PIC
4.7k 4.7k

Figure 24. Dot Counting Circuit

The sensor placed at the bottom of Pac-Man, approximately 3cm away from the
floor of the maze. When thereis no light, the voltage measured across the
positive terminal is around 0.6V (see connection diagram above). When ared
LED shines to the sensor, the measured voltage is approximately 1.1V.

Therefore, the reference voltage is set to 0.96V by connecting a 20kQ resistor and
a4.7kQ resistor as shown in the diagram above. Since the LEDs emit a narrow
beam of light, the sensor in the center of Pac-Man sometimes cannot detect the

18

red LED on the maze. Therefore, the dot counting circuit isimproved by placing
two sensors side by side.

The dot counting system should output a high signal if either one of the sensors or
both sensors detect the LED. Therefore, the outputs of both sensors are sent
through an OR-gate. The output signal from the OR-gate is then sent to the
microcontroller.

53 Pac-Man Tracking

As Pac-Man roams round the maze, Ghost should be able to detect Pac-Man's
presence when they are within close proximity. Several implementations were
considered including radio frequency for transmitting absolute position data,
overhead camerafor image processing, and sonar for detecting the rebounded
signal from Pac-Man. However, we decided that the best way to implement this
functionality is to mount an infrared beacon on Pac-Man, and wide-angle infrared
receivers on Ghost.

The basic concept is ssmple: Pac-Man transmits an infrared signal in 360-degree
coverage. Depending on the varying signal intensity of the infrared receivers,
Ghost should be able to determine the general direction and distance of Pac-Man.

The receiver modules we use are PNA4612 (Figure 25), which detects IR signal
modulated at 38kHz. Not only is PNA4612 sensitive to a specific transmitter
frequency, but also it is sensitive to an emitter wavelength at around 960nm.
These features make PNA4612 particularly attractive since it effectively blocks
off IR interference. The beacon detector on Ghost consists of four receiver
modules arranged to detect signals from front, left, right and back. Testing results
show that PNA4612’ s detection range is well beyond the120cm requirement.
Upon further testing, however, we discovered an unfavorabl e output
characteristic. The active low output signal becomes an aperiodic pulse train
when the IR source is around a 90cm range. The length of the on-period of such a
pulsing output isinversely related to the distance between 80cm and 100cm until
the output becomes aflat 5V beyond 120cm. In order to convert such an irregular
output into ausable signal, we fed the output to alow-pass filter to turn the pulse
signal into a smooth anal og voltage level, which can be easily interfaced with the
microcontroller’s A/D converter. (See Figure 26)

19

- 00| +Vv
141
) R9
X :
7.6

_ Cl l
i 220nF :
Figure 25. PNA4612 Figure 26. Beacon Receiver Circuit

The IR beacon module on Pac-Man, as shown in Figure 27, consists of a 555
timer used to produce a 38kHz square wave and IR emitters with a maximum
output wavelength at 960nm. The resister and capacitor values chosen were
calculated by the following formulawhere T1 isthe On period, and T2 is the Off
period of the square wave. The duty circleis set at 60%:

T1 = 0.6*(1/38000)

T2 = 0.4*(1/38000)
T1=0.693*(RA + RB)*C
T2 =0.693*RB*C

V2
5V
Jr(f/
RA
5%15 7. 784k 40%
Ghd Vcc |_"
ot '?hs_“ RB
\ 4 4 < » 4 r
—Rst Ctl 15K
RS R7 R6 R5 R4 R3
680 $680 $680 680 680 <680
C
7 e o 2 o 1
A\ 7 10nF = i
. 4 L 2 L 2 2 2 1 L 2

Figure 27. IR Beacon Circuit.

20

Since the beacon signal needs to cover 360 degrees but each emitter only hasa
60-degree transmission angle, we arranged 6 emittersinto acircleto form the IR
beacon. Both IR beacon and IR receivers are positioned on the top of the robots
above the wall, so they are not obstructed as the robots move around the maze.

54 Contact Sensor

The contact sensor on both Pac-Man and Ghost uses a simple pull-down circuit to
notify the microprocessor upon collision of the two robots. The circuitry is as
shown below in Figure 28. The contact sensor is designed to be aring
surrounding the base of the robots. The circular shape was chosen to provide an
all-around, large surface area for contact. Thering is constructed with aflexible
plastic support with brass strips mounted on it. The conductive strips on the two
rings are designed to be offset, so the contact would be detected by both robots.
The contact sensor is shown below in Figure 28.

Figure 28. Contact Sensor

55 LCD display

The number of dots collected, as well as the number of times contacts are made
are shown on the top layer of Pac-Man by an LCD display. Each timeadot is
collected, the microcontroller will increment the dot count on the LCD display.
The last two digits belong to the dot count, and the first digit is the contact count.

Originally we intended to use LED 7-segment displays,; however, due to current
consideration, we changed our design to the less current intensive LCD
technology. Upon testing, we discovered that the segments on the LCD display
fades quickly if we simply supply DC power to the segment pin. The solutionis
to use a square wave to drive the display segments allowing the LCD to discharge
during the off period. Testing also shows that the frequency of the square wave

21

affects the quality of the display. At frequencies|ower than 10Hz, the display
flickers and at frequencies higher than 300Hz, the display beginsto fade. As
shown in Figure 29, we constructed another 555 timer to supply a square wave at
around 100 Hz. Meanwhile, CD4026, a decade counter with 7-segment outputs,

are used for each digit displayed. The 100Hz square wave is connected to the
output enable pin of CD4026, to produce a square wave output that drives the

LCD pins.
Reset V4
R1O 5V
1K CD4026 +V
= P1 F>16—T Tlspl ay
P P15 [0
503 pral o
R11 -P4 P13 o)
5V 1k P5 P12 0O
L1P6 P11 o)
+V P7 P10 e}
T = _riP8 P9 o)
é R14k
2.7
555 5
ad Vee — CD4026 SV
— -

Tr Dis :
—Outg Thr RB1 P1 p169 di|spl ay
—Rst Ctl 8.2k R13¢ ||l HP2 P15 (O

—P3 P14} o)

1k, P4 P13 o)

—P5 P12 o)

—| P66 P11 o)

P7 P10 o)

o _riP8 P9)

10nF :I: - 1nF =
= V6
CD4026 5V
"
Mfein P1 E%gf? di spl ay

[0

ERIKZ —Sp3 pral o)

- —P4 P13 o)

—P5 P12 o)

— —P6 P11 o)

P7 P10 o)

_riP8 P9 o)

Figure 29. LCD display

22

6.0 Microcontroller and Software

Our microcontroller of choice was the Microchip PIC16F877. MicroCore-11
microcontrollers using the Motorola HC11 are provided by the lab but upon further
consideration, they were rejected for anumber of reasons. The project consists of two
robots, each of which requires a microcontroller. One MicroCore-11 costs around $100
and using two would already consume half of our budget constraint of $400.

Financial issues aside, its functionality were also inadequate for our purposes.

Interfacing with RF requires at least 3 pins to decode the four direction signals: up, down,
left, and right, and also to indicate the presence of an RF signal. Two stepper motors are
used on each robot and each stepper motor driver chip requires 2 pins for stepping and
direction, for atotal of 4 pins. An LCD display uses 3 pinsfor counting lives, score, and
reset. Ghost contact and maze-dot counting require 1 pin each for atotal of 2. Obstacle
sensors use LEDs and this requires a minimum of 1 pin to power if we power them all
together. Thisaready totalsto arequirement of 13 pins, which exceeds the 12 digital
pins available on the MicroCore-11.

While searching for a microcontroller with a high pin count and minimal cost, we came
across the Microchip PICmicro MCU series, with up to 32 1/0 pinsin the 40-pin package
and aretail price of around $10, one-tenth of the price of aMicroCore-11. Of the
PICmicro series, we picked the PIC16F877 based on its popularity (alarge amount of
information and support from hobbyists were found on the Internet) and because it had
the largest flash memory size of its class.

Drawbacks of the PIC16F877 are that its memory sizeis dightly small at 8K x 14 words,
(although it is expandable externally) and because it is hot packaged in amodule like the
MicroCore-11. Some of the external circuitry required on the PIC16F877 was a clock
oscillator, which we chose to be at 4 MHz and a programmer to write to the flash
memory. The advantages, however, outweigh the drawbacks for our purposes even
though we may start off more slowly because the programming could not begin until we
built the programmer.

There are essentially two software designs in the Pac-Man project—one for the Pac-Man
robot and one for the Ghost. Though they are very different in functionality and as a
result, in implementation, they both play the central rolein system integration. Each
robot also interfaces to different hardware modules and so these modules are discussed as
separate software functions below.

6.1 Pac-Man Rabot
The goal of the Pac-Man robot is to receive from the user wireless control signals

to move it around the maze. Obstacle sensors guide its navigation. Asit traverses
through the maze, it collects and counts the dots on the floor and displays it on an

23

LCD. If it comesin contact with the Ghost robot, it will freeze in shock for afew

seconds before recovering.

Six modules are identified in the Pac-Man robot that help it achieve its above

goal.

» Obstacle sensors (front, l€eft, right) prevent Pac-Man from running into

maze walls and help straighten itself if it is off-centred.
* AnLCD display shows the number of dots Pac-Man has collected and the
number of timesit has been caught by the Ghost.

* RF controls the direction of movement of Pac-Man around the maze.

» Stepper motors perform the actual movement of the robot.

* The maze-dot sensor looks for the LEDs on the floor that it will “collect.”
» The Ghost contact sensor notifies the event of being caught by the Ghost.

Maze Dot Sensor

Obstacle Sensors
(front, left, right)
LCD display RF Receiver
PIC16F877
Microcontroller
Stepper Motors Ghost Contact
Sensor

Figure 30. Architectural model of Pac-Man software

Given these modules, the pin assignments they require are laid out as follows.
Note that the RF signal, Ghost contact, and maze-dot sensor are events that can
happen at any point during the game so the pin assignments are chosen on pins
38-40 such that they are handled by an interrupt service routine. Also, pins 2-9
are analog inputs so that right, left, and front obstacle sensors can estimate the

distance from awall as a function of the voltage input.

24

Voo —-[] 1 k_J 40 Q= RF Signal Interrupt
Right Chstacle e—] 2 209 [] == Shiost Contact
Left Chatacle wy—] 3 28 [] -=—w~ haze Dot Sensar
Front Obstacle at—e] 4 27 [-—a Unused
Unuzsed =—=[]c 25 []-=—s= Unuzed
Unused -—=] & 35 [J=—w= Unuzed
Unused -sp—e-]7 24 []-=—s RF Bit 1
Unuzed st @ [23 []=—s RF B0
INUSED i [':"; 22 [~=—— oD
nuzsed .—] 10 L 31 [] 55
WO e [1 E 20 [w—s= Chstacle Senzor Power
r-Ca——] o 26 [=m—an LD Lives
CECIllEEOF PN 7 e— 13 o 26 [et |20 Piirits
Ozcillatar Pin 2 -—{] 14 27 [=—= LD Reset
Unused -] 15 26 [] bt Uniuzed
Righit Wheel Step at—e-] 16 26] =—a= Unuzed
Left wwheel Step a—e] 17 24 []-w—= Unuzed
Unuzsed -—e=] 18 22 [=—= Unuszed
Rigght Wheel Direction e 1o 22 [] -t | ruzed
Unused --—=] 20 21 J=— Left Wheel Direction

Figure 31. Pin assignments for Pac-Man

6.1.1 Obstacle Sensors

We decided to control the power to the obstacle sensors with the PIC to
reduce current consumption instead of having the sensor LEDs constantly
power from our battery supply. When the sensors are powered on, the left,
right, and front obstacle sensors readings are valid.

How the sensors readings represent the proximity to the maze wallsis
determined in the manual calibration stage when the robot is first turned
on. When the robot is being calibrated, measurements are taking to
establish whether a signal represents the presence of awall or not. Also
measured is the nearest acceptabl e distance to a sidewall before some
adjustments are made for being off-centred.

Voltage increases as a sensor approaches awall so by establishing a

threshold for the presence of awall, any reading that is lower than this
threshold assumes that there is no presence of awall.

25

Obstacle Sensors PIC16F877
¢)
Power Microcontroller
¢ A A
Left Obstacle
Sensor
Right Obstacle
Sensor
A 4
Front Obstacle

Sensor

Figure 32. Model of interface between PIC and obstacle sensors

6.1.2 LCD Display

The PIC sends three types of signalsto the LCD depending on the event.
In the case of a Ghost contact, the PIC sends an LCD lives signa
indicating the number of timesit has been hit. When Pac-Man runs over a
maze dot, it sends an LCD point signal indicating the number of dotsit has
collected. Finally, an LCD reset signal isfor initializing the display when
anew game begins.

LCD display [« PIC16F877

4«—— 1 Microcontroller

Figure 33. Model of interface between PIC and LCD display

6.1.3 RF Receiver

The RF receiver interfaces with the PIC’ sinterrupt service routine because
the user can press any button on the controller at any point in the game.
This scenario was chosen because it was vital that the PIC did not miss
any of the control signals, which may have resulted if the RF signals were
received through polling.

Three bits are used to communicate the four different directions. The
format is listed below.

26

Table 2. RF signal format for Pac-Man movement

RF Interrupt | RFBit 1 | RFBit0
Nosigna | O 0 0
North 1 0 0
East 1 0 1
West 1 1 0
South 1 1 1

)
RF Receiver [PI C16F877
L3 Microcontroller

Figure 34. Model of interface between PIC and RF receiver

6.1.4 Stepper Motors

The PIC controls each stepper motor through two pins to the stepper motor
driver chip. One pin controls the stepping pulse to the motor, hence
controlling the speed, and the other controls the direction of the rotation,
used in making stationary turns.

The pulsing code is done through atimer interrupt routine, whose 16-bit
timer counts at arate of 1 MHz (one-quarter of our clock speed). When
the interrupt is called, we toggle the stepping pulse pin value from high to
low or from low to high to simulate a square wave output.

An interrupt istriggered when this 16-bit timer overflows from OxFFFF to

0x0000. Hence, an interrupt is by default called at arate of

1x10° counts 125 counts _ 15.96 interrupts
second interrupt second

the interrupt rate by setting the timer value to some number greater than

0x0000 at every interrupt so that it counts from that number up to OXFFFF

instead of 0x0000 every time.

. However, we can increase

Our target speed for Pac-Man is 20 cm/s. To determine the rate of
interrupts, we required some information about the physical robot
dimensions. They are summarized in the table below.

Table 3. List of parameters needed to control motor speed

Separation distance of wheels 11.5cm
Diameter of wheels 6.cm
Degrees per step of stepper motor | 7.5

27

<—— 11.5cm—>

Figure 35. Sketch of wheel dimensions

To make a 90-degree turn, the distance travelled by one wheel was
determined. Since the distance between the wheelsis 11.5 cm, the
distance travelled by the arc length | when 8 is 90 degrees can be

calculated. Therefore, | =18 = (11.5)¥H=§ncm.
020 4

o\
<—— 115 cm—>|

To make a stationary turn, the distance | to be travelled is distributed
between the two wheels as |/2 because each wheel will turn 45 degrees.

One whedl will turn 45 degrees forward, and the other will turn 45 degrees

backward. Therefore, each wheel travel s? X% = ? Tcm

To find the number of stepper pulses needed to turn each wheel 45
degrees, we cal cul ate the number of pulses as

23 lrotation 360° lpulse
cmx X X

o : = 23pulses
6rrm 1rotation 7.5°

Because our target speed is 20 cm/s, we calcul ate the number of pul ses per
second required as
20cm « lrotation N 360° N lpulse - 51pulses _ 19.6 ms

second 6rrcm 1rotation 7.5° second pulse

To achieve a speed of 20 cm/s, we need to create a square wave of about
51 Hz. That means we need to toggl e the stepper output twice every 19.6
ms or in other words, generate interruptsto toggle at 19.6 / 2 = 9.817 ms.

28

We know that the timer counts at 1 MHz so that in 9.817 ms, the timer
will do 1IMHz x9.817 ms=9817 counts. If we set thetimer valueto be
OXFFFF — 9817 = 55718 = OxD9AG6 at every interrupt, the timer will

overflow every 9.817 ms, creating an interrupt in which we will toggle the

stepper output to create

a 51 Hz square wave.

Left Stepper [

Motor Driver |4 Pl Cl6F87ﬁ
— Microcontroller

Right Stepper [«

Motor Driver |¢—

Figure 36. Model of interface between PIC and stepper motor drivers

The diagram above shows how the PIC interfaces to the stepper motors.

6.1.5 Ghost Contact Sensor

The Ghost contact sensor is connected to an interrupt pin on the PIC

because the Ghost can catch Pac-Man at any point during the game. This

prevents polling which is susceptible to missing the signal and holds up
CPU time. The following diagram models how the Ghost contact sensor

is connected to the PIC.

PIC16F877 Ghost Contact
Microcontroller Sensor

Figure 37. Model of interface between PIC and Ghost contact sensor

6.1.6 Maze Dot Sensor

The maze-dot sensor is connected to an interrupt pin on the PIC for the
same reasons as the Ghost contact sensor. The following diagram models

how the Maze dot sensor is connected to the PIC.

PIC16F877
Microcontroller

4 Maze Dot Sensor

Figure 38. Model of interface between PIC and maze dot sensor

29

6.2 Ghost Robot

The goal of the Ghost robot isto roam the maze reading its beacon signal to
estimate the current location of Pac-Man. Having knowledge of the mazein
advance, the Ghost solves for the shortest path to reach Pac-Man and moves to the
estimated position. It constantly does this until it contacts Pac-Man at which

point it will freeze for afew seconds to allow Pac-Man to escape.

Four modules are identified in the Ghost robot that help it achieve its above goal.
» Obstacle sensors (front, l€eft, right) prevent the Ghost from running into
maze walls and help straighten itself if it is off-centred.
» The beacon sensor reads a broadcast signal from Pac-Man and usesiit to
estimate the current position of Pac-Man
» Stepper motors perform the actual movement of the robot.
» The Pac-Man contact sensor notifies the event of having caught Pac-Man.

Obstacle Sensors Pac-Man
(front, left, right) Beacon Sensor
PIC16F877
Microcontroller
Stepper Motors Pac-Man
Contact Sensor

Figure 39. Architectural model of Pac-Man software

Pin assignments for the Ghost are similar to that of Pac-Man except for the
modules that the Ghost do not have and the beacon sensor. There are four beacon
sensors, one to detect each of the four directions Pac-Man may be away from the
Ghost. They useanaog pins7, 8, 9, and 10.

30

VDD ——=[]

Right Ohstacle sge—-
Left Ohstacle p—-]
Front Ohstacls s
Unuzed ss—as-]

Unuzsed -a—s[]

Beacon Front se—e-]
Beacon Left e[
Beacon BAcK e[
Beacon Right ag—e]

YO g []

VED g []

CZCIllEEOr PiM T ee—
Ozcillatar Pin 2 -a—{
Unused s

Right Wheel Step et
Lett Wheel Step a—s-]
Unused s

Rigght Wheel Direction g
Unuzed -=—]

u 40

]
ar

a5

00 = O N e L k) —

- =
bl = |

BReuppe

PIC16F8&77

By — = — =
DD oo W oW
M RE

[]=—= Calibration Povwer
[] #—= Pac-hian Contact
[] -a—e Lnuzed

[= Lirzed

(] -=—= Linuzed

(] —w= LnLzed

[] ~w—w- Calibration Ground
[bt Cliboration Button
] ~— 00

[] w— 55

[]t Ohstacle Senzor Power
[] bt LIMLIZE

] st LINLized

] e Unused

26 [] bt Uniuzed

(] e LIrized
[]-—w= LinLized
[]~ Unused
[=— Lirzed
[m— | =ft Wheel Direction

Figure 40. Pin assignments for the Ghost

Because the obstacle sensor, stepper motors, and Pac-Man contact sensor are
identical to that of Pac-Man’s, they require no repeat explanation here. We will
discuss the only thing unique to the Ghost in this section, the beacon sensor.

6.2.1 Beacon Sensor

The PIC receives four different beacon readings from the Pac-Man beacon
broadcast signal, one for each of itsfour directions. It uses these readings
to estimate the position of Pac-Man. The interface for these sensors to the
PIC is modelled below.

Front Beacon | Back Beacon
Sensor ﬁ £ Sensor
PIC16F877
Microcontroller

Left Beacon)
Sensor J L ngggr?;e:con

Figure 41. Model of interface between PIC and beacon sensors

31

The beacon signal strength is a negative, non-linear function of Pac-Man’s

distance from the Ghost. For a 6x6 maze, we measure and plot the signal
strength of the four beacon signals as follows.

46V | 46V | 46V | 46V | 46V | 46V
46V | 46V | 46V | 46V | 46V 3'\?5
46V | 46V | 46V | 46V | 45V O.\:/LQ
46V | 46V | 46V | 46V 0.33 0.05
\ \
asv | ¥ | 46v | a6v |06V | 2%
\Y \Y
Ghost
46V | 46V | 46V | 46V | 46V ﬁ
Figure 42. Front beacon measurements of Pac-Man position
46V | 46V | 46V | 46V | 46V | 46V
46V | 46V | 46V | 46V | 46V | 46V
46V | 46V | 46V | 26V | 46V | 46V
46V | 46V | 46V | 46V | 46V | 46V
46V 4.53 3.2V 0.07 o6V | 43V
\ \
Ghost
46V | 44V | 26V 0.04 0.04
v v @

Figure 43. Left beacon measurements of Pac-Man position

32

The measurements for the right and back are similar to that of the right and front
and so we will rely on the above two measurements to determine Pac-Man’s
position. The measurements are very crude because the non-linear signal changes
very fast for distances of Pac-Man between 2 and 3 cells away but we can
generalize afew things about beacon sensors.

* For readingsfrom 0V to 0.08 V on one sensor and 4.6 V on the other
three, we will assume Pac-Man isin direct line-of-sight and is 1 or 2 cells
away in the direction of that sensor. We will assume 2 cells away unless
that would place it beyond the boundaries of the maze.

* For readings from 0.08 V to 3.8 V on one sensor and 4.6 V on the other
three, we will assume Pac-Man isin direct line-of-sight and is 3 cells away
in the direction of that sensor.

» For readingsfrom 3.8V to 4.5V on one sensor and 4.6 VV on the other
three, we will assume Pac-Man isin direct line-of-sight and is 4 cells away
in the direction of that sensor.

We will discard diagonal signal readings because of the added complexity to the
estimation algorithm and justify it by reasoning that because Pac-Man is almost
always constantly moving, it will cross the Ghost’s direct line-of-sight frequently
enough for the estimation to be valid.

From the estimation of Pac-Man’s position, the Ghost solves for the shortest route
to Pac-Man’ s position from its own current position using an algorithm called fast
flooding, based on the Micromouse Information Centre at
hftp://micromouse.cannocK.ac.UK/mazelfastiToodsolver-htm.| This algorithm marks
the target godl, in this case Pac-Man's estimated position, with aflag, and fills
accessi ble neighbours with ascending numbers until al the cells have a number
associated with it. The Ghost then retrieves the number associated with its current
position and moves to adjacent cells only if they have alower number associated
with it.

The example below illustrates the algorithm. It was taken from the Micromouse
Information Centre in the above noted link. In this example, G isthe destination
goal or in our case, Pac-Man'’s estimated position, and Sisthe starting cell or in
our case, Ghost’s current position. Note how accessible adjacent neighbours are
filled with increasing numbers. From this, the robot will move to adjacent cells of
decreasing numbers.

33

http://micromouse.cannock.ac.uk/maze/fastfloodsolver.htm

6T~
[B I R o [=N W B T [= N B T
o T [Feewvel [FoEoe
=T Lo =T Lo 545_001{
7 m 575 m rn.__h_ m
G- | By E-FkEe
[¥ B B o od O o= oL 0ol O =T L0
o | Felwu] [T ofew e
L Loy =T Lo o= w |l r~
m LL [La m [=1y Q
o~ | | @~ | @-lvl~e| @[]~
[Rt W] [= W B T e I e I T e I e I T
o[T R w | Feleve] FoEoe
Loy =T Lo _.DA_._.D_ = Lo =T o foo -~
7 a 75 a rn___h_ a rn___h_ _uaa
g~ | | G-~ | @-l~leel (@]~
L o L [=N B S o W e B B B] e B B B]

Figure 44. Example of the maze fast flooding algorithm

7.0 Maze

The mazeisthe areain which Pac-Man and the Ghost travel. There are 24 dots,

represented by red LEDs, and 24 photoresistors on the floor of the maze. Each dot is

turned off after Pac-Man travels across it.

Like the computer Pac-Man game, we wanted to create a setting in which Pac-Man can
“eat dots.” We came up with two approaches. One was a mechanical design, which

composes of a gate on the maze and a switching system under the floor. The gate would
be pushed open when Pac-Man travels across the gate. Then, the switch that is connected

to the gate will be opened and the “dot” will be turned off. However, this design has
many limitations. For example, users need to manually set the gates back to the original
position to reset. Moreover, building the gate on the maze takes too much time, adds
clutter to the maze and isunreliable. Therefore, we decided to go with the second
approach, which uses sensors to detect Pac-Man and turn off the LEDs. The details of

this design are discussed below.

7.1 Physical Dimension

We had two choices in the type of material to use for the maze: cardboard or
wood. We decided to go with wood since it was readily available from the
machine shop. The walls are painted white, since they work best for the obstacle
detectors and the ground black. The dimension of the mazeis 122cm x 122 cm
and is evenly divided into 36 squares — 6 rows and 6 columns. The thickness of
thewallsis 2 cm; the positions of the walls are designed so that there are straight
lanes and 90 degree turns in the maze (see Figure 45 below). The width of each
laneis 18.5 cm with 1- 2 mm tolerance.

Figure 45. Maze Design

The height of the outer wallsis 22cm and the inner walls are 16cm high. The
outer walls were designed to be higher than the robots in order to avoid
interferences, such asvisible light and infrared, outside of the maze. The inner
walls are shorter than the robots so that the Ghost is able to locate Pac-Man
throughout the maze with a beacon sensor.

35

7.2 Dots

The dots on the maze are implemented with CMOS chips and a simple circuit.
The following is the connection diagram for one dot on the maze. In genera, a
red LED is*ON'’ at the beginning and after being reset. Then, it isturned off
when a sensor corresponded to the red LED senses a super bright white LED that
is placed at the bottom off the Pac-Man robot.

Voo Wee
o o

Veeo Voo
e

680

~ 4044
+ 3 0 Control YDD

Ot H
E Input
E'Sk;.?k V==
l ——47pF

Figure 46. Dot Circuitry for the Maze (for one dot)

Thefirst part of the dot circuit isacomparator. The comparator outputs low when
light with certain intensity is sensed; otherwise, it outputs high. Asshown inthe
above diagram, the reference voltage is connected to the positive terminal and the
photoresistor along with a 4.7k resistor, is connected to the negative terminal.
When the sensor senses light, its resistance decreases. As aresult, the voltage to
the negative terminal increases. When the negative terminal voltageis higher
than the positive terminal voltage, the comparator outputs zero.

_ Rs

4.7k + Rs
The voltage measured across the negative terminal is around 2.4V under the
condition that all the lightsin the room are turned on. When a super bright white
LED islocated on top of the photoresistor, the measured negative terminal
voltageisin arange from 3.8V-4.1V. Therefore, the reference voltage that is
connected to the positive terminal is set to 3.62V. The design is good because it
is sensitive only to the light emitted by the super bright white LEDsand it is
stable.

The second part of the dot circuit isamemory device. After alight is sensed, it
turns off adot on the maze and saves the “ OFF’ stage until users reset the dot. A
NAND R/Slatch (CD4044) is chosen. The following is the truth table for the
memory device.

36

Table 4. Truth table of the Memory Device

Py

Start
No light
Light
No light
Light
Reset
Start

No light
Reset

%
=

N ===l =)
olR|r|lor Ik ikrkrkF
ok |k |o|r|r|r|lololo

N
o

The output from the comparator is connected to ‘S’ and adipswitch is connected
to‘R’. ‘R’ must be high while operating. When ‘R’ is switched to low, al the
red LEDs on the maze will be turn on again.

Thelast part of the dot circuit isaswitch. CD4066, a bilateral switch is chosen.
The output of the memory device is connected to ‘ Control’ in the CD4066. When
‘Control’ islow, thedot is*ON’; when ‘Control’ is high, thedot is‘OFF (see

Figure 47 below).
Yop Yoo
Control 5% 5%
ov "
Voo i Voo
4\ 10% k
VoL VoL '

Figure 47. Timing diagram of the Switch (including CD4066, resistor, and capacitor)

As shown in the above diagram, when * Control’ islow, the output of switchis
equal to VDD. However, when *Control’ is high, the output voltage never
reaches OV yet the output voltageis low enough to turn off thered LED.

The dots on the maze are powered by a power supply in thelab. In order to make
the LEDs brighter, we inputted 12V to the dot circuit.

37

8.0

Power

8.1 M otor

Our stepper motors require an output voltage of 12V to operate. Since thiswas
our highest voltage requirement, we used 12V as our base voltage and used
regulators to supply power to the rest of the circuits. Luckily, we were ableto use
one regulator to power all of the circuits since they al required the same input
voltage of 5V.

For our battery selection, we decided to use arechargeable 12V Lead-Acid

battery with arating of 1200mA [on Pac-Man and 10 rechargeable 1.2V Nickel-
Hydride AA batteries with arating of 1600mAI[h on the Ghost. We recommend in
the future that the AA batteries be used since they have alonger life and are
lighter in weight in comparison to the Lead-Acid battery. (The AA batteries were
not used on both robots due to our budget restraints.)

While testing the motors at low frequencies, we found that it was essential to have
awell-regulated voltage from the battery source. In order to ensure proper
operation, we placed a decoupling capacitor across the 5V power and ground pins
of the motor driver chips and across the 12V battery terminals.

8.2 Controller

The transmitter module for the controller circuit required a clean and well-
regulated voltage to operate efficiently. A low passfilter was added to the
transmitter module and a bypass capacitor to the logic ICsin cases when the
quality of the power supply is poor. Due to the transmitter’s low power
consumption (6mA), we were able to use a rechargeable 9V Nickel-Hydride
battery to power the module and the LM 7805 5V regulator to power the other
various componentsin the controller. The total amount of current consumed by
the controller is 10mA, which iswell below the battery rating of 150mAh. We
found that this was enough to power the controller for several hours.

8.3 M aze

The LEDs and sensors placed on the maze are powered off the power supply since
we opted that it would not be necessary to power them off a battery. The voltage
supplied to the LEDSs, sensors and |Cs were set to the maximum voltage rating of
15V. We wanted to maximize the voltage because we found that the brighter the
LEDs on the maze, the easier it was for Pac-Man to detect it.

38

84 Regulators

Regulators were added to provide a constant output voltage to the variable load on
both robots. On Pac-Man, we used a LM 7805 5V regulator to power all the
circuitry. Thisincluded the RF receiver module, the obstacle sensors, contact
sensor, micro-controller, stepper motor driver chips, the LCD, and the beacon
circuit. Thetotal amount of current consumed by al circuitsisless than 1A,
which was enough to meet the regulator’ s specifications.

On the Ghost, we decided to experiment with a5V switching voltage regulator to
send power to the micro-controller, obstacle sensor, contact sensor and beacon
circuits. See Figure 48 for the circuit set-up. The switching regulator contains a
52kHz internal frequency oscillator that allows it to output the input power asa
pulse. Theregulator controls the pulse duration by using feedback as shownin
Figure 49. The width of the pulse changes based on the amount of output power
required. When the output power is small, the pulse duration is narrow and when
the output power islarge, the pulse duration iswider.

FEEDBACK
7V - 40v(60V) LM2575/ |3

+
IN
UNREGULATED 1 LM2575HY +5V
DC INPUT -50 OUTPUT REGULATED
. oUTRUT
Cin AT 14 Load
:I: 100 pf

Illlll
o LiTel 19

7 1
Gl® 11 kiia - Tl Bkl CLEFTNT
e ALY mh IR] LBt

Figure 49. LM 2575 Circuit Block Diagram

39

Due to its switching operation, a switching regulator has higher efficiency than
three pin regulators (used on Pac-Man). A three pin regulator has lower
efficiency because its input power is equal to its output power at all times whereas
for a switching regulator, the output power is usually less than the input power
since the amount sent out is determined by the amount of power required by the
external circuits. We recommend using a switching regulator on both robots in
order to obtain higher efficiency for future considerations. A switching regulator
was not implemented on Pac-Man due to time constraints and limited resources.

40

9.0 Recommendations

RF

In order to remove as much circuitry on Pac-Man as possible, we recommend
designing a two-way communication link between the controller and Pac-Man.
The LCD displaying the score and lives of Pac-Man could be displayed elsewhere
in order to reduce the circuitry on Pac-Man, in addition to conserving power on
the robot.

Wall sensors

A plastic casing can be built to improve the stability and consistency of the
SENsors.

Beacon

Currently there are four IR receivers on Ghost allowing it to detect Pac-Man in
four directions. For added tracking capability, two more receivers can be added
to achieve 360-degree detection.

LCD

The LCD display used in our Pac-Man project is a simple 3-digit numeric display.
For more display options, full-featured LCD modules are available at a reasonable
price around $20.

Microcontroller

Having designed an on-board programming interface directly on the PCB instead
of having to take the PIC in and out of the socket would have made
reprogramming the PIC with new code easier and faster, and also reduce physical
damageto the PIC itself. Thisis supported through the In-Circuit Serial
Programming (ICSP) interface specified by Microchip.

Also, by modulating the obstacle sensor output and filtering the output from 60
Hz, electrical line noise could have reduced the unpredictable interference from
ambient room light, and made sensor readings and navigation more reliable.

Finally, putting the obstacle and beacon sensor output through a properly
designed non-linear amplifier could have made the sensor output reading more
linearly proportional to the distance instead of how we have it dropping inverse
square (or cube) to the distance.

41

M otor

When it comes to choosing motors for your robot, the most important factor isthe
torque. Therefore, it isbest to have estimated how much torque your robot will
require before deciding on which motor to use. The required torque can be
calculated easily through Newton’s second law, F = ma, in combination with your
desired wheel size. Torqueistypically specified using the following three units:
g-cm (gram-centimeter), oz-in (ounce-inch), and mNm (milli-Newton-meter).

Power

As mentioned in the report, a switching regulator should be used on both robotsin
place of the three-pin regulator to increase the efficiency of the power used. In
addition, we recommend that a separate battery be used to power the logic circuits
and RF modules since these devices, especially the RF, are sensitive to any
glitchesin the power supply.

42

10.0 Conclusion

The design and implementation of a Pac-Man game proved to be a challenging and
rewarding experience. While keeping the objectives of the EECE474 coursein mind, we
were able to successfully complete the integration of two robots — Pac-Man and Ghost -
using wireless communication, sensors, motors, software, power and circuit design.

After completing numerous tests and enhancements on our designs, the robot Pac-Man is
able to traverse the maze following directional signals sent from awireless user controller
while the Ghost is able to automatically track Pac-Man down to the shortest path from
one location to another in the maze. Both robots are capable of aligning themselves to
the middle of alane and complete 90 degree and 180 degree turns while avoiding contact
from walls. Moreover, Pac-Man successfully is able to count and keep score of the
number of dotsit has collected and turn the dots off on the maze once they have been
“eaten”.

43

APPENDICES

APPENDIX A: Photo Gallery

Pac-Man

Wireless Controller

The game setting

APPENDIX B: PCB Layouts

Pac-Man

Bottom Layer (PIC, motor, contact sensor)

Middle Layer (RF module, obstacle sensors, dot counting)

aﬁ'@

?ﬂffvg
—p— E" h;
| = q j -q E gl--_
Db 13 g--_rl = g
b | | o A — 9
Efél - 3L Joaes
¥ e JC
: : =11 e
el 11 J
= E—— e L — 5? P
=n_"|""E.:::ll_|_.l
g=lig I
g o % =0 g
[l e——— T
ﬂtaﬂl_-
[ELLC dFd Teur 1 Foded
Top Layer (beacon, LCD)
0 I o
=0 1101113 : ol o
2)| sH = 8>
5‘ :ﬂ__‘i T | 5
1 o] T
- - - !
3 I pAoo0o0A 0000300
=1 12 T O D=—— . =
JIES: -
I oo

— %o o 1]

- 'i o -ll_'"___.l
o T——— —d | . :
- ‘T' D=y By 1L O0Q : o
i - . 'I : Il_ =
— = L] Hg o e e—
-'I-':: I—n: - ~T E ﬁ']
ﬂ P o & r!

= HLE 4F% Tean | =ToF FLI#

Ghost

Bottom Layer (PIC, motor, contact sensor)

Top Layer (obstacle sensors, beacon)

Controller

RF module

Maze

LEDs and sensor circuit

e LS
...-_HJ

WiOp [wodl pSP 3333

APPENDI X C: Expense Report

Quantity Part Source

2 YaWave Whip 418MHz Antenna DigiKey

1 RF Transmitter 418MHz DigiKey

1 RF Receiver 418MHz DigiKey

4 Stepper Motor 12VDC DigiKey

1 LM2575T-5.0 Switch Regulator DigiKey

6 Photo IC infrared 38kHz DigiKey

4 SPDT Momentary Switches Active Electronics

2 PIC16F877 Active Electronics

4 UCN5804B Stepper Motor HVW Technologies Inc.

Driver

1 12V Lead Acid Battery RadioShack

9 LEDs Lee's Electronic Components
30 Photoresistors Lee's Electronic Components
* Passive components EE Department
** Active components EE Department

TOTAL
10 AA 1.2V Batteries Donated
2 2 castors Donated
TOTAL
GRAND TOTAL

* resistors,capacitors,inductors,diodes,LEDs
** MC145026, MC145027, LM555, CD4071, LM324,LM 7805, CD4044, CD4066

-Cost of donated items wer e estimated

Price Amount

$3.29
$36.41
$59.46
$32.15
$4.27
$2.93
$7.49
$10.79
$10.00

$10.05
$3.42
$1.00

$6.58
$36.41
$59.46
$128.60
$4.27
$17.58
$29.96
$21.58
$40.00

$10.05
$30.78
$30.00
$40.00
$30.00
$485.27

$40.00
$15.00

$55.00

$540.27

APPENDI X D: Gantt chart

Week1l Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11-12
(May 6- (May 12-18) (May 19-25) (May 26- (June 2-8) (June9-15) (June16-22) (June23- (June 30- (July 6-12) (July 13-26)
11) June 1) June 29) July 5)

I

Project Proposal

Component
research/selection

Psuedo code write-up

Obstacle sensor testing

Dot sensor design/testing

RF/encoder/decoder
testing/integration

DC motor testing

RF controller integration
with PIC

Obstacle sensor integration
with PIC

Stepper motor testing

Contact sensor design

Beacon design/testing

PCB layout 11
(due June 11)

Chasis design/construction

RF PCB testing

RF/motor/obstacle
integration with PIC

Design maze layout

Acquire/sand/paint ¥4" wood
for maze walls

Acquire/test 5V switching
regulator

Acquire/test new stepper
motors

PCB board layout
111 (due June 25)

PCB testing
(PIC,motor,RF,obstacle
SeNnsors)

System Integration/Testing

PCB board layout
1V (due July 9)

Videotaping/final report

—

APPENDI X E: Source Code

Pac-Man Header File

[HE KR KR KK K KA KK KKK KKK KR KKK KA KKK KA KA KKK KKK KKK KA KKK XK K KA KK XK A [

/* EECE 474 Surmmer Senester

2002

*/

R e e e TR e ey

| *

/* Team 1 Pac-Man M crocontroller

Code

/*
/*
/* Pac-Man code header file
/%

R e R E ey

/1 RF Constants
#define RF_O
#define RF_1
#define RF_ON

/1 Obstacle Sensor Constants
/1 Note: higher sensor
#define SENSOR_LED
#define SENSOR_VALI D_DELAY
#defi ne OBSTACLE_LEFT
#define OBSTACLE_RI GHT
#def i ne OBSTACLE_FRONT

/1 Other Sensor
#define CONTACT
#define DOT_COUNT

Const ant s

/'l Notor
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
centre

Cont rol
R_WHEEL
L_WHEEL
RI GHT_ANGLE_TURN
BACK_TURN
L_WHEEL_DI R
R_WHEEL_DI R
L_FORWARD
L_BACKWARD
R_FORWARD
R_BACKWARD
ADJUST_AMT

Const ant s

/1 LCD Constants

#defi ne LCD_RESET
#define LCD_LI VES
#define LCD_PO NTS

#def i ne DOT_COUNT_EXPI RE

#define CELL_SIZE

enumdirection { N E, S W

102

i

PIN_D7
10

/1 RF LSB pin
/1 RF MBB pin

/1 RF incom ng signal

readi ngs nmean cl oser obstacle

Il
Il
11
Il
11

Il
11

11
11l
Il

interrupt pi

input pin powering sensor LEDs

time in nms for sensor
anal og channel
anal og channel
anal og channel

read vali
ANO
ANL
AN2

Ghost contact sensor pin

maze dot

ri ght wheel
left wheel

eating/ counting sensor

notor stepping pin
not or stepping pin

nunber of pul ses on one wheel t

n

d from sensor LED on

pin

o turn 90 degrees

s backward
is forward

left wheel direction pin

ri ght wheel direction pin

left wheel direction pinlowis forward
left wheel direction pin high i

ri ght wheel direction pin high

right wheel direction pin low i

nunber of pulses to sl ow wheel

/1 nunber of pulses to traverse one step

enumturn { RIGHT, LEFT, BACK, NONE };

/1 Function Prototypes

void turn_right();

void turn_left();

voi d turn_backwards();

voi d stepper_tiner();

voi d signal _change();

voi d read_obstacles(int &e

ft,

int &ront,

int &ight);

s backward
down by when adjusting for off-

Pac-Man Source Code

[HE KR KR A KA KKK KR AKX KA KKK KKK KA KKK KA KKK KKK KKK AKX KA I KKK KA KA KA KKK [

/* EECE 474 Summer Senester 2002

*/

[HE KRR KR KK K KA KRR KKK KA KKK KA KKK AKX KA KKK KKK KKK KA KA KKK AKX KKK KAk [

/*
/* Team 1 Pac-Man M crocontrol | er Code

/*

/*

/* This programis for controlling the Pac-Man robot. |t is designed

/* for a Mcrochip Pl Cl6F877 running with an oscillator frequency of 4

/* MHz. It interfaces with the obstacle,

/* sensors, and radio frequency control to control
/* motors for novenent and the LCD display for user inteface.

| *

Ghost contact, and dot-eating

the robot's stepper

*/

*/

[RE KR KA KA KKK KKK KKK KA KKK KA KKK KKK KKK KX KA KKK AKX KA KKK KKK KA KA XA [

#i ncl ude <16F877. h>
#i ncl ude "Pac-Man. h"

/I #devi ce adc=10
#use del ay (cl ock=4000000)
#f uses XT, NOWDT, NOPROTECT

int ob_left, ob_right, ob_front;
short rf_enable = 0;

short turn_enable = 0;

int turn_counter = O;
short turn_180 = 0;

short stop = O;

int adjust_counter = 0;
short adjust_left = 0, ad
short dot_count_tinmer =
int dot_count_counter =
direction current_orient
short initial _start = 0;
int cell_counter = 0;
short turn_ready = 0; //used for

ust_right = 0;

pre-signal ed turns

int turn_delay_count = O; // used to delay pre-signaled turns

turn next_turn = NONE;

int calibration_stage = 0;
int FRONT_OBSTACLE = 105;
int MAX_RIGHT = 0;

int MAX_LEFT = 0;

int MN_RIGHT = 0;

int MN_LEFT = 0;

int MDDLE_RIGHT = 0;

int MDDLE_LEFT = 0;

#def i ne NUM AVERAGES 1

voi d read_obstacles(int &eft, int &ront,

/1 turn on sensor LEDs

out put _bi t (SENSOR_LED, 1);
del ay_ns(SENSOR_VALI D_DELAY) ;

set _adc_channel (OBSTACLE_LEFT);

del ay_us(10);
left = read_adc();

set _adc_channel (OBSTACLE_RI GHT);

del ay_us(10);
right = read_adc();

set _adc_channel (OBSTACLE_FRONT);

del ay_us(10);
front = read_adc();

/1 turn off sensor LEDs

out put _bi t (SENSOR_LED, 0);

}

void turn_right()

{
turn_enable = 1;
turn_180 = O;
turn_counter = O;
out put _bi t (L_WHEEL_DI R,
out put _bi t (R_\WHEEL_DI R,

}

void turn_left()

turn_enable = 1;

turn_180 = O;

turn_counter = 0;

out put _bi t (L_WHEEL_DI R,

out put _bi t (R_\WHEEL_DI R,
}

voi d turn_backwards()

turn_counter = O;

L_FORWARD) ;
R_BACKWARD) ;

L_BACKWARD) ;
R_FORWARD) ;

int &ight)

*/

turn_enable = 1;
turn_180 = 1;
out put _bi t (L_WHEEL_DI R, L_BACKWARD) ;
out put _bi t (R WHEEL_DI R, R_FORWARD) ;
}
short left_wheel = 0, right_wheel = 0O;

#1 NT_TI MERL
voi d stepper_tiner()

if (initial_start)
set_timer1(0xD9A6) ; I/l sets timer to interrupt in 9.8nms (for 20cm's)

out put _bi t (L_WHEEL, |eft_wheel);
out put _bi t (R_\WHEEL, ri ght_wheel);

if (!turn_enable)
{
out put _bi t (L_WHEEL_DI R, L_FORWARD);
out put _bi t (R_.WHEEL_DI R, R_FORWARD);
if ((stop == 0) & (turn_ready == 1)) // turn-delay in progress
{

turn_del ay_count ++;

}
if(!'(turn_ready))
{
if ((ob_right < MN R GHT) && (next_turn == RIGHT)) //right side is open and a

{

right turn is registered

turn_del ay_count = 0;
turn_ready = 1;

}
else if ((ob_left < MN_LEFT) & (next_turn == LEFT)) //left side is open and a
left turn is registered

{
turn_del ay_count = 0;
turn_ready = 1;
}
}
el se
{
if(turn_delay_count == 75)
stop = 1;
turn_del ay_count = 0;
}
}
if (stop)
{
switch (next_turn)
{
case LEFT:
turn_left();
br eak;
case RI GHT:
turn_right();
br eak;
case BACK:
turn_backwards();
br eak;
}
}
else if (next_turn == BACK)
{
turn_backwards();
}
}
el se
{
turn_count er ++;
if (!turn_180)
{

if (turn_counter == Rl GHT_ANGLE_TURN)
{

turn_enable = 0;
turn_180 = O;
turn_counter = O;
next _turn = NONE;
turn_ready = O;

}

}

el se

{
if (turn_counter == BACK_TURN)
{

turn_enable = 0;
turn_180 = O;

turn_counter = O;

next _turn = NONE;
turn_ready = O;

}
if ((!stop || turn_enable) & initial_start)
{

if (ladjust_left)

{
if(left_wheel)
| ef t _wheel = 0;
el se
| eft _wheel = 1;
}
el se
{
adj ust _count er ++;
if (adjust_counter == ADJUST_AMI)
{
adjust_left = 0;
adj ust _counter = O;
}
}

if (!adjust_right)
{

if(right_wheel)
ri ght _wheel = 0;

el se
ri ght _wheel = 1;
}
el se
{
adj ust _count er ++;
if (adjust_counter == ADJUST_AMI)
{
adj ust _right = 0;
adj ust _counter = 0;
}
}
}
el se
{
| eft _wheel = 0;
ri ght _wheel = 0;
}
if (input(DOT_COUNT))
{
out put _bi t (LCD_PO NTS, 1);
dot _count _tiner = 1;
}

if (dot_count_tiner)

dot _count _count er ++;
if (dot_count_counter == DOT_COUNT_EXPI RE)

{
out put _bi t (LCD_PO NTS, 0);
dot _count _tiner = 0O;
dot _count _counter = O;
}
}
}
}
#I NT_RB

voi d signal _change()

short rf1, rfo;
int i;
if (input(RF_QN))
{
if(tinitial_start)

/1 calibration node
if (calibration_stage == 0) // nove robot in front of wall
{
/1 calibrate nearest front sensor distance
FRONT_OBSTACLE = 0;
for (i =0; i < NUMAVERAGES; i++)
{
out put _bi t (SENSOR_LED, 1);
del ay_ns(SENSOR_VALI D_DELAY*10) ;
set _adc_channel (OBSTACLE_FRONT);
del ay_us(10);
FRONT_OBSTACLE += read_adc();
out put _bi t (SENSOR_LED, 0);
}

FRONT_OBSTACLE /= NUM_AVERAGES;
cal i bration_stage++;

else if (calibration_stage == 1)

/1 calibrate nearest acceptable left and farthest acceptable right
/1 (before off-centre adjustnent takes effect)

MAX_LEFT = 0;

M DDLE_RI GHT = 0;

for (i = 0; i < NUMAVERAGES; i++)
{

out put _bi t (SENSOR_LED, 1);
del ay_ns(SENSOR_VALI D_DELAY*10) ;

set _adc_channel (OBSTACLE_LEFT);
del ay_us(10);
MAX_LEFT += read_adc();

set_adc_channel (OBSTACLE_RI GHT);
del ay_us(10);
M DDLE_RI GHT += read_adc();

out put _bi t (SENSOR_LED, 0);
}

MAX_LEFT /= NUM AVERAGES;
M DDLE_RI GHT /= NUM AVERAGES;

cal i bration_stage++;

}
else if (calibration_stage == 2)
{
/1 calibrate nearest acceptable right (before off-centre adjustnment takes
ef fect)
MAX_RI GHT = 0;
M DDLE_LEFT = 0;
for (i = 0; i < NUMAVERAGES; i++)
{
out put _bi t (SENSOR_LED, 1);
del ay_ns(SENSOR_VALI D_DELAY*10) ;
set_adc_channel (OBSTACLE_RI GHT);
del ay_us(10);
MAX_RI GHT += read_adc();
set _adc_channel (OBSTACLE_LEFT);
del ay_us(10);
M DDLE_LEFT += read_adc();
out put _bi t (SENSOR_LED, 0);
}
MAX_RI GHT /= NUM_AVERAGES;
M DDLE_LEFT /= NUM AVERAGES;
cal i bration_stage++;
}
else if (calibration_stage == 3)
/1 calibrate far left (no wall on left sensor)
M N_LEFT = 0;
for (i = 0; i < NUMAVERAGES; i++)
{
out put _bi t (SENSOR_LED, 1);
del ay_ns(SENSOR_VALI D_DELAY*10) ;
set _adc_channel (OBSTACLE_LEFT);
del ay_us(10);
M N_LEFT += read_adc();
out put _bi t (SENSOR_LED, 0);
}
cal i bration_stage++;
}
else if (calibration_stage == 4)

/1 calibrate far right (no wall on right sensor)
M N_RI GHT = 0;

for (i = 0; i < NUMAVERAGES; i++)
{
out put _bi t (SENSOR_LED, 1);
del ay_ns(SENSOR_VALI D_DELAY*10) ;

set _adc_channel (OBSTACLE_RI GHT);
del ay_us(10);

el se

M N_RI GHT += read_adc();

out put _bi t (SENSOR_LED, 0);

cal i bration_stage++;

else if (calibration_stage == 5)

initial _start =1 ; //facing north initially

rfl
rfo

if(
{

rf_enable = 1;

rfl
rfo

input (RF_1);
i nput (RF_0);

'rfl & !'rf0) // north

next _turn = NONE;
if (rfl & !rf0)

next _turn = RIGHT;
if (1rfl && rf0)

next _turn = LEFT;
/'l south

next _turn = BACK;

input (RF_1);
i nput (RF_0);

if (!rfl & !rf0O) // north
{

switch (current_orient)

{

case N
/1 move forward
next _turn = NONE;
br eak;

case E
/1 turn left
next _turn = LEFT;
break;

case S:
/1 turn_backwards
next _turn = BACK;
br eak;

case W
/1 turn right
next _turn = RI GHT;
br eak;

}

current_orient = N;

}
elseif (rfl & !rf0) /1 west

switch (current_orient)

case N
/1 turn left
next _turn = LEFT;
break;

case E:
/1 turn backwards
next _turn = BACK;
br eak;

case S:
/1 turn right
next _turn = RIGHT;
br eak;

case W

/1 move forward
next _turn = NONE;
break;

current_orient = W

}
elseif (!'rfl & rf0) /1 east
11 stop = 1;

switch (current_orient)

{

case N

/1 turn right
next _turn = RI GHT;
break;

case E

/1 east

/1 west

/1 move forward
next _turn = NONE;
br eak;

case S
/1 turn left
next _turn = LEFT;
break;

case W
/1 turn backwards
next _turn = BACK;
break;

}

current_orient = E;

el se // south

{
switch (current_orient)
{
case N
/1 turn backwards
next _turn = BACK;
br eak;
case E
/1 turn right
next _turn = RI GHT;
br eak;
case S:
/'l move forward
next _turn = NONE;
br eak;
case W
/1l turn left
next _turn = LEFT;
br eak;
}
current_orient = S;
}
}
}
el se
{
rf_enable = 0;
}
if (input(CONTACT))
stop = 1;
el se
stop = 0;
if (input(DOT_COUNT))
{
out put _bi t (LCD_PO NTS, 1);
dot _count _tiner = 1;
}
}
mai n()

out put _bi t (LCD_RESET, 1);

delay_ns(1);

out put _bi t (LCD_RESET, 0);

setup_timer_1(T1_I NTERNAL| T1_DIV_BY_1); /] setup interrupts
enabl e_i nterrupts(| NT_TI MERL) ;

enabl e_interrupts(I NT_RB);

enabl e_i nt errupt s(GLOBAL) ;

setup_port_a(ALL_ANALOG) ;
setup_adc(adc_cl ock_internal);

out put _bit (L_WHEEL_DI R, L_FORWARD) ; /1l initial direction forward
out put _bi t (R_.\WHEEL_DI R, R_FORWARD) ; /1 initial direction forward

out put _bi t (SENSOR_LED, 0);
while(initial _start == 0);
for(5 ;)

{

read_obstacl es(ob_left, ob_front, ob_right);

if (ob_front > FRONT_OBSTACLE)

{
stop = 1;
11 cel | _counter = CELL_SIZE;
}
el se
{
stop = 0;
}

if (!turn_enable)

{

if ((ob_left > MAX_LEFT) || (ob_right
{

if(((signed int)(ob_left - MAX_LEFT)) < ((signed int)(ob_right
{

/1 adjust to righ
adjust_right = 1;
adj ust_left = 0;

else // closer to right

{
/1 adjust to |ef
adj ust_left = 1;
adj ust _right = 0;

adj ust _right = 0;
adj ust_left = 0;

> MAX_RI GHT))

- MAX_RIGHT)))

Ghost Header File

[HE KR KR A KA KKK KR AKX KA KKK KKK KA KKK KA KKK KKK KKK AKX KA I KKK KA KA KA KKK [

/* EECE 474 Summer Senester 2002 */
/**/
1* */
/* Team 1 Pac-Man M crocontrol | er Code */
/* */
/* */
/* Ghost code header file */
/* */

R e R E ey

/1 Costacle Sensor Constants
/1 Note: higher sensor readings nmean cl oser obstacle

#defi ne SENSOR_LED PIN_D7

#def i ne SENSOR_VALI D_DELAY 10 // time in ms for sensor read valid from sensor LED on
#defi ne OBSTACLE_LEFT 1 /1 anal og channel for |eft sensor

#def i ne OBSTACLE_FRONT 2 /1 anal og channel for front sensor

#defi ne OBSTACLE_RI GHT 0 /1 anal og channel for right sensor

/1 Ot her Sensor Constants

#define CONTACT PI N_B6

/1 Motor Control Constants

#define R_WHEEL PIN_C1

#define L_WHEEL PIN_C2

#defi ne RI GHT_ANGLE_TURN 43 /1 nunber of pulses on one wheel to turn 90 degrees
#define BACK_TURN 92

#define L_WHEEL_DI R PI N_D2 /1 left wheel direction pin

#define R WHEEL_DI R PI N_DO /1 right wheel direction pin

#defi ne L_FORWARD 1 /1 left wheel direction pin lowis forward
#def i ne L_BACKWARD 0 /1 left wheel direction pin high is backward
#defi ne R_FORWARD 0 /1 right wheel direction pin high is forward
#def i ne R_BACKWARD 1 /1 right wheel direction pin |owis backward
#def i ne ADJUST_AMI 1 /1 nunber of pulses to sl ow wheel down by when adjusting for
off-centre

/1 Beacon Sensor Constants

#def i ne BEACON_FRONT 4 /1 anal og channel AN4

#def i ne BEACON_LEFT 5 /1 anal og channel AN5

#def i ne BEACON_BACK 6 /1 anal og channel AN6

#def i ne BEACON_RI GHT 7 /1 anal og channel AN7

/1 Maze Constants

#define CELL_SIZE 102 /'l nunber of pulses to traverse one cell

/1tenp

/| #define CELL_SIZE 2 /'l nunber of pulses to traverse one cell

#defi ne NUM_CELLS 36 /1 number of cells in maze

#define NUM X CELLS 6 /1 nunber of cells in east-west direction
#define NUM_Y_CELLS 6 /1 nunber of cells in north-south direction
#define NORTH 0x01

#def i ne EAST 0x02

#def i ne SOUTH 0x04

#define WEST 0x08

#define | NI TI AL_X_POS 2 /1 startup x coordinate for Ghost

#define | NI TIAL_Y_POS 2 /1 startup y coordinate for Ghost

#define CALI BRATI ON_POAER PIN_B7

#def i ne CALI BRATI ON_GN\D PI'N_B1

#def i ne CALI BRATI ON_BUTTON PI N_BO
enumdirection { N, E S, W};

/1 Beacon Constants
enum Pac- Man_dir { PACFRONT, PACBACK, PACLEFT, PACRI GHT };

#define NEAR 4
#define M DDLE 179
#defi ne FAR 214

/1 Function Prototypes
voi d estimate_Pac-Man(signed int &, signed int &, int front, int back, int left, int right);
void solve(int x, int y); // calculates shortest way to reach (x,y)
/1 fromcurrent position and wites |ist
/1 of noves in nenory bank 3 starting with offset 0
void go_forward();
void turn_right();
void turn_left();
voi d turn_backwards();
voi d stepper_tinmer();
voi d signal _change();
void read_obstacles(int & eft, int &ront, int &ight);
voi d read_beacon(int &ront, int & eft, int &ack, int &ight);
voi d nmove(direction dir);
short wall _exists(int x, int y, direction dir);
short is_neighbour(int x, int y, direction dir);
int point_to_cell_nunber(signed int x, signed int y);
int beacon_minval (int front, int left, int back, int right);

Ghost Source Code

[RE KR A KA KKK KA KR AKX KA KKK KKK KA KKK KA KKK KKK KKK KKK KA KKK X KA F XK A KKK [

/* EECE 474 Summer Senester 2002 */
/**/
1 * */
/* Team 1 Ghost Mcrocontroller Code */
/* */
1 * */
/* This programis for controlling the Ghost robot. It is designed for */

/* a Mcrochip PICL6F877 running with an oscillator frequency of 4 Mz

/* It interfaces with the obstacle, Pac-Man contact, and Pac-Man beacon- */
/* finding sensors. The CGhost estimates the position of Pac-Mn using */
/* the beacon-finding sensors and with know edge of its current *

/* position, uses a flood-filling maze-solving algorithmto find the */
/* shortest path to get to Pac-Man. */
/* */

[RE KR KR KKK KKK KA AKX KKK KKK KKK K KA I A KA KKK KKK KK AKX KKK KKK KKK KA KA KKK [

#i ncl ude <16F877. h>
#incl ude "Chost. h"

#devi ce PI C16F877 *=16

/1 #devi ce adc=10

#use del ay (cl ock=4000000)
#fuses XT, NOADT, NOPROTECT

int turn_counter = O;

int cell_step_counter = 0;
int adjust_counter = 0;
direction current_orient = N

short next_nove_ready = 1;

short turn_enable = 0;

short turn_180 = 0;

short stop = 1;

short adjust_left = 0, adjust_right = 0;
short backturn_dir = 0O;

short initial _start = 0;

int calibration_stage = 0O;
int FRONT_OBSTACLE = 245;
int MAX_RIGHT = 0;

int MAX_LEFT = 0;

int MN_RIGHT = 0;

int MN_LEFT = 0;

int MDDLE_RIGHT = 0;

int MDDLE_LEFT = 0;

short pacpos_unknown = 0;

int maze[NUM CELLS] =

{
NORTH | VEST,
NORTH | SQUTH,
NORTH,
NORTH | SQUTH,
NORTH | SQUTH,
NORTH | EAST,
VEST | EAST,
VEST | NORTH,
SQOUTH,
NORTH | SOUTH,
NORTH | EAST,
VEST | EAST,
VEST | EAST,
VEST | EAST,
NORTH | WEST | SOUTH,
NORTH,
0,
EAST,
SOUTH,
SOUTH,
NORTH,
EAST | SOUTH,
VEST | EAST,
VEST | EAST,
NORTH | \AEST,
NORTH | SQUTH,
0,
NORTH | SOUTH,
EAST | SOUTH,
VEST | EAST,
WEST | SOUTH,
NORTH | SQUTH,
SOUTH,
NORTH | SOUTH,
NORTH | SOUTH,
EAST | SOUTH
H
e _ --> increasing x

*/

| |
.
[
L I
11
I
I\
Il increasing y
int current_x_pos = INITIAL_X PGCS;
int current_y_pos = INITIAL_Y_PGCS;
short wall _exists(int x, int y, direction dir)
int cell_no, cell_walls;

cell _no

if ((maze[cell _no]
return 1;

else if ((maze[cell_no] |

return 1;

else if ((maze[cell_no] |

return 1;

else if ((maze[cell_no] |

return 1;
return O;

}

(y*NUM X_CELLS) + x;

NCRTH) && (dir == N))

EAST) && (dir

SOUTH) && (dir

VEST) && (dir

void nove(direction dir) // nove direction one cell

switch (dir)
{

case N
switch (current_orient)
{
case N
/1 move forward
go_forward();
br eak;
case E:
/1l turn left
turn_left();
br eak;
case S
/1 turn_backwards
turn_backwards();
br eak;
case W
/1 turn right
turn_right();
br eak;
}
current_orient = N
br eak;
case E:
switch (current_orient)
{
case N
/1 turn right
turn_right();
br eak;
case E
/1 move forward
go_forward();
break;
case S
/1 turn left
turn_left();
break;
case W
/1 turn backwards
turn_backwards();
br eak;
} .
current _orient = E
br eak;
case W
switch (current_orient)
{
case N
/1 turn left
turn_left();
break;
case E
/1 turn backwards
turn_backwards();
break;
case S:
/1 turn right
turn_right();
br eak;
case W

/1 move forward

E))
S))
W)

}

case S

go_forward();

br eak;

}
current_orient = W
br eak;

switch (current_orient)

{

case N
/1 turn backwards
turn_backwards();
break;

case E
/1 turn right
turn_right();
break;

case S:
/1 move forward
go_forward();
br eak;

case W
/1 turn left
turn_left();
br eak;

}

current_orient = S;
br eak;

voi d estimate_Pac-Man(signed int &x, si

{

Pac- Man_dir pacdir;
int mnval ue;

int cells_away = 0O;
int random

pacdir = PACFRONT;

m nval ue

= front;

if (mnvalue > back)

{

m nval ue = back;
pacdir = PACBACK;

if (mnvalue > left)

{

mnvalue = left;
pacdir = PACLEFT;

}
if (minvalue > right)

{

}

m nval ue = right;
pacdir = PACRI GHT;

if (mnvalue < FAR)

{

gned int &, int front, int back,

if (mnvalue <= NEAR)

cel | s_away
else if (mnvalue <
cel | s_away
else if (mnvalue <
cel | s_away

switch(pacdir)

{
case PACFRONT:
switch(cu

{

case N
case S:
case E:
case W

}

br eak;

case PACLEFT:
switch(cu

{

case N

= 2;
= M DDLE
= 3;

= FAR)
= 4

rrent_orient)

X = current_x_pos;
current_y_pos

break;

X = current_x_pos;
y = current_y_pos
br eak;

X = current_x_pos
y = current_y_pos;
br eak;

current _x_pos
current_y_pos;

X =
y =
break;

rrent_orient)

+

+

cel | s_away;

cel | s_away;

cel | s_away;

cel | s_away;

int

left,

int

right)

}

short

{

X = current_x_pos - cells_away;
= current_y_pos;
br eak;
case S
X = current_x_pos + cells_away;
y = current_y_pos;
break;
case E
X = current_x_pos;
y = current_y_pos - cells_away;
break;
case W
X = current_x_pos;
y = current_y_pos + cells_away;
br eak;
}
break;

case PACRI GHT:
switch(current_orient)

case N
X current _x_pos + cells_away;
current_y_pos;

ak;

@ I

y
br
case S
X = current_x_pos - cells_away;
y = current_y_pos;
br eak;
case E:
current _x_pos;
current _y_pos + cells_away;
ak;

o< X
@ 11l

case W
current _x_pos;

current_y_pos - cells_away;
ak;

o< x
@ 1

r
br eak;

case PACBACK:
switch(current_orient)

{
case N
X = current_x_pos;
y = current_y_pos - cells_away;
br eak;
case S
X = current_x_pos;
y = current_y_pos + cells_away ;
br eak;
case E:
X = current_x_pos - cells_away;
y = current_y_pos;
br eak;
case W
X = current_x_pos + cells_away;
y = current_y_pos;
br eak;
}
br eak;
}
}
el se
{
random = get _tinmerl();
x = (randont 10) 9%6;
y = randon?§;
/1 random Pac- Man position estimte
}

is_neighbour(int x, int y, direction dir)

int walls;
wal | s = maze[point_to_cel | _nunber(x,y)];

if (dir =N)

{
if ((walls & NORTH)
return O;
el se
return 1;
}

else if (dir == E)

if (walls & EAST)
return 0O;
el se
return 1;

}
else if (dir == S)
{

}

if (walls & SOUTH)

el se

else // dir == W

{

}

voi d sol ve(

int x,

retu

retu

rn 0;

rn 1;

if (walls & VEST)

el se

inty)

retu

retu

rn 0;

rn 1,

/1 maze solving algorithmto get to point pos fromcurrent position with fast fl ooding
i queue_x[NUM CELLS],
goal _di stance[NUM CELLS]; // holds each cell's distance from point pos

/

for

{

nt
nt
nt
nt
nt
nt
nt

/

nei gh

_cel | _x,

nei gh_

queue_y[NUM CELLS]; // holds queue of cells to calcul ate distance

cell _y;

queue_count = 0, queue_index = 0, curr_cell_dist = 0; // for solving maze

curr_pos_di st, neigh

curr_i

(i=

cell _x,

initialize frontier

curr_ce

_pos_dist; // for creating roadmap
1 _y;

array

0; i < NUM.CELLS; i++)

goal _di stance[i] = OxFF;

goal _di stance[point _to_cel | _nunber(x,y)] = curr_cell _dist;

// add target poi
queue_x[0] = x;
queue_y[0] =y;
queue_count ++;

nt pos

whi | e(queue_count > 0)

queue_count - -;
curr_cell _x =
curr_cel |l _y = queue_y[queue_i ndex] ;
curr_cel | _dist

curr_cell _dist + 1;

curr_cell _dist + 1;

curr_cel | _di st

+ 1;

to queue

queue_x[queue_i ndex] ;

= goal _di stance[poi nt _to_cel | _nunber(curr_cell_x, curr_cell_y)];

queue_i ndex++;
if (curr_cell_dist !'= OxFF)
{
/1 check all neighbours for accessibility
if (is_neighbour(curr_cell_x, curr_cell_y, N)
{
neigh_cell _x = curr_cel |l _x;
neigh_cell_y = curr_cell_y - 1;
if (goal _distance[point_to_cell_nunber(neigh_cell_x, neigh_cell_y)] == OxFF)
goal _di st ance[poi nt _to_cel | _nunber (nei gh_cel | _x, neigh_cell_y)] =
queue_x[queue_i ndex + queue_count] = neigh_cell _x;
queue_y[queue_i ndex + queue_count] = neigh_cell_y;
queue_count ++;
}
}
if (is_neighbour(curr_cell_x, curr_cell_y, E))
{
neigh_cell _x = curr_cell _x + 1;
neigh_cell _y = curr_cell _y;
if (goal _distance[point_to_cell_nunber(neigh_cell_x, neigh_cell_y)] == OxFF)
goal _di stance[poi nt _to_cel | _nunber (nei gh_cel | _x, neigh_cell_y)] =
queue_x[queue_i ndex + queue_count] = neigh_cell _x;
queue_y[queue_i ndex + queue_count] = neigh_cell_y;
queue_count ++;
}
}

if (is_neighbour(curr_cell_x, curr_cell_y, S))

{

nei gh_cel | _x
nei gh_cel | _y

curr_cell _x;
curr_cell _y + 1;

if (goal _distance[point_to_cell_nunber(neigh_cell_x, neigh_cell_y)] == OxFF)
goal _di stance[poi nt _to_cel | _nunber (nei gh_cel | _x, neigh_cell_y)] =

nei gh_cel | _x;
nei gh_cel | _y;

queue_x[queue_i ndex + queue_count]
queue_y[queue_i ndex + queue_count]
queue_count ++;

if (is_neighbour(curr_cell_x, curr_cell_y, W)

{
neigh_cell _x = curr_cell _x - 1;
neigh_cell _y = curr_cell _y;
if (goal _distance[point_to_cell_nunber(neigh_cell_x, neigh_cell_y)] == OxFF)
goal _di stance[poi nt _to_cel | _nunber (nei gh_cel | _x, neigh_cell_y)] =
curr_cell _dist + 1;
queue_x[queue_i ndex + queue_count] = neigh_cell _x;
queue_y[queue_i ndex + queue_count] = neigh_cell_y;
queue_count ++;
}
}

}

/1 create roadmap

curr_pos_di st = goal _di stance[point_to_cell_nunber(current_x_pos, current_y_pos)];
curr_cell _x = current_x_pos;

curr_cell _y = current_y_pos;

for (i=0; curr_pos_dist > 0; i++)

{
/'l check north
nei gh_cell _x = curr_cell _x;
neigh_cell _y = curr_cell_y - 1;

if ((neigh_cell_x < NUM X CELLS) && (neigh_cell_y < NUMY_CELLS))

{
if (goal _distance[point_to_cell_nunber(neigh_cell_x, neigh_cell_y)] < curr_pos_dist)
{

/1 add to roadmap

curr_pos_di st = goal _di stance[poi nt_to_cel | _nunber (nei gh_cell _x, neigh_cell_y)];
write_bank(3, i, NORTH);

curr_cell _x nei gh_cel | _x;

curr_cell_y nei gh_cel | _y;

continue;

}

/'l check east
nei gh_cel | _x
nei gh_cel | _y

= curr_cell_x + 1;
= curr_cell _y;

if ((neigh_cell_x < NUMX_CELLS) && (neigh_cell_y < NUMY_CELLS))
{

if (goal _distance[point_to_cell_nunber(neigh_cell_x, neigh_cell_y)] < curr_pos_dist)

{
/1 add to roadmap
curr_pos_di st = goal _di stance[point_to_cell_nunber(nei gh_cell_x, neigh_cell_y)];
write_bank(3, i, EAST);
curr_cell _x = neigh_cell _x;
curr_cell _y = neigh_cell_y;
conti nue;
}

}

/'l check south
nei gh_cel | _x
nei gh_cel | _y

curr_cel | _x;
curr_cell _y + 1;

if ((neigh_cell_x < NUM X CELLS) && (neigh_cell_y < NUMY_CELLS))
{
if (goal _distance[point_to_cell_nunber(neigh_cell_x, neigh_cell_y)] < curr_pos_dist)

/1 add to roadmap

curr_pos_di st = goal _di stance[poi nt_to_cel | _nunber (nei gh_cell _x, neigh_cell_y)];
write_bank(3, i, SOUTH);

curr_cell _x nei gh_cel | _x;

curr_cell_y nei gh_cel | _y;

conti nue;

}

/'l check west
nei gh_cel | _x
nei gh_cel | _y

= curr_cell_x - 1;
= curr_cell_y;

if ((neigh_cell_x < NUMX_CELLS) && (neigh_cell_y < NUMY_CELLS))
{

if (goal _distance[point_to_cell_nunber(neigh_cell_x, neigh_cell_y)] < curr_pos_dist)

{
/1 add to roadmap
curr_pos_di st = goal _di stance[point_to_cell_nunber(nei gh_cell_x, neigh_cell_y)];
write_bank(3, i, WEST);
curr_cell _x = neigh_cel |l _x;
curr_cell _y = neigh_cell _y;
continue;
}
}
}
write_bank(3, i, 0);

/1 clean up

queue_count = 0, queue_index = 0, curr_cell_dist = 0;

}
int point_to_cell_nunber(signed int x, signed int y)
int pos_y;
int pos_x;
pos_y =y,
pos_Xx = X;
if (x >05)
pos_x = 5;
else if (x <0)
pos_x = 0;
if (y >05)
pos_y = 5;
else if (y <0)
pos_y = 0;

return (pos_y*NUM X CELLS) + pos_x;
}

void read_obstacles(int &eft, int &ront, int &ight)
{

/1 turn on sensor LEDs

out put _bi t (SENSOR_LED, 1);

del ay_ns(SENSOR_VALI D_DELAY) ;

set _adc_channel (OBSTACLE_LEFT);
del ay_us(10);
left = read_adc();

set _adc_channel (OBSTACLE_FRONT);
del ay_us(10);
front = read_adc();

set _adc_channel (OBSTACLE_RI GHT);
del ay_us(10);
right = read_adc();

/1 turn off sensor LEDs
out put _bi t (SENSOR_LED, 0);
}

voi d read_beacon(int &ront, int & eft, int &ack, int &ight)
{

set _adc_channel (BEACON_FRONT);
del ay_us(10);
front = read_adc();

set _adc_channel (BEACON_LEFT);
del ay_us(10);
left = read_adc();

set _adc_channel (BEACON_BACK);
del ay_us(10);
back = read_adc();

set _adc_channel (BEACON_RI GHT) ;
del ay_us(10);
right = read_adc();

}
voi d go_forward()
{
cel | _step_counter = 0O;
stop = 0;
next _nove_ready = O;
turn_enable = 0;
turn_180 = O;
turn_counter = O;
output _bit(L_WHEEL_DI R, L_FORWARD);
out put _bi t (R_WHEEL_DI R, R_FORWARD) ;
}
void turn_right()
{
cel | _step_counter = O;
stop = 0;
next _nove_ready = O;
turn_enable = 1;
turn_180 = O;
turn_counter = O;
out put _bit (L_WHEEL_DI R, L_FORWARD);
out put _bi t (R WHEEL_DI R, R_BACKWARD) ;
}
void turn_left()
{

cel | _step_counter = 0;
stop = 0;

next _nove_ready = O;
turn_enable = 1;
turn_180 = O;

turn_counter = O;
output _bit(L_WHEEL_DI R, L_BACKWARD);
out put _bi t (R WHEEL_DIR, R_FORWARD) ;
}
voi d turn_backwards()
{
cel | _step_counter = 0O;
stop = 0;
next _nove_ready = O;
turn_enable = 1;
turn_180 = 1;
turn_counter = O;
if (backturn_dir)
{
backturn_dir = 0;
output _bit(L_WHEEL_DI R, L_BACKWARD);
out put _bi t (R WHEEL_DIR, R_FORWARD) ;
}
el se
{
backturn_dir = 1;
output _bit (L_WHEEL_DI R, L_FORWARD);
out put _bi t (R WHEEL_DI R, R_BACKWARD) ;
}
}
short |eft_wheel = 0, right_wheel = 0;
int beacon_minval (int front, int left, int back, int right)
int mnval ue;
m nval ue = front;
if(left < minvalue)
mnval ue = left;
}
if(back < minvalue)
m nval ue = back;
}
if(right < minvalue)
{
m nval ue = right;
}
return mnval ue;
}
#| NT_TI MERL
voi d stepper_timer()
{
if (initial_start)
set_timer1(0xE152);
wave)
out put _bi t (L_WHEEL, |eft_wheel);
out put _bi t (R_\WWHEEL, ri ght_wheel);

if (!turn_enable && !next_nove_ready)

{

/] sets timer to interrupt

if (cell_step_counter++ >= CELL_SIZE)
{

cel | _step_counter =
next _nove_ready = 1;

stop = 1;

}

out put _bi t (L_WHEE
out put _bi t (R_WHEE

}
else if (turn_enable)

t
i
{

if (turn_counter

el se

if (turn_counter

-

ur n_count er ++;
f (!turn_180)

_Di
_Di

R
R,

0;

L_FORWARD) ;
R_FORWARD) ;

RI GHT_ANGLE_TURN)

turn_enable = 0;

turn_180 = O;
turn_counter = O;
== BACK_TURN)

in 7.853981634ns (for

64 Hz

turn_enable = 0;
turn_180 = O;
turn_counter = 0;

}
}
}
if (!stop || turn_enable)
if (ladjust_left || turn_enable)
if(left_wheel)
| eft _wheel = 0;
el se
| ef t _wheel = 1;
}
el se
{
adj ust _count er ++;
if (adjust_counter == ADJUST_AMI)
{
adjust_left = 0;
adj ust _counter = 0;
}
}
if ('adjust_right || turn_enable)
{
if(right_wheel)
ri ght _wheel = 0;
el se
ri ght _wheel = 1;
}
el se
{
adj ust _count er ++;
if (adjust_counter == ADJUST_AM)
{
adj ust _right = 0;
adj ust _counter = O;
}
}
}
el se
{
| ef t _wheel = 0;
ri ght _wheel = 0;
}
}
}
#| NT_RB

voi d signal _change()

if (input(CONTACT))

stop = 1;
el se
stop = 0;
}
mai n()
int i;
int ob_left, ob_right, ob_front;
int beacon_|, beacon_f, beacon_r, beacon_b;

signed int Pac-Man_pos_x, Pac-Man_pos_y;
int next_nove;

wite_bank(3, 0, 0); // initializing menory bank 3 which will hold list of noves cal cul ated from sol ve
out put _bi t (SENSOR_LED, 0);
setup_timer_1(T1_I NTERNAL| T1_DIV_BY_1); // setup interrupts

out put _bi t (CALI BRATI ON_POVER, 1);
out put _bi t (CALI BRATI ON_G\D, 0);

enabl e_i nterrupts(I NT_TI MERL) ;
enabl e_interrupts(I NT_RB);
enabl e_i nterrupt s(GLOBAL) ;

setup_port_a(ALL_ANALOG) ;
setup_adc(adc_cl ock_internal);

output _bit(L_WHEEL_DIR, L_FORWARD); // initial direction forward
out put _bi t (R_WHEEL_DI R, R_FORWARD) ; /1l initial direction forward

while(initial_start == 0)
if (input(CALI BRATI ON_BUTTON))
{
whi | e (input (CALI BRATI ON_BUTTON)) ;

/1 calibration node
if (calibration_stage == 0) // nove robot in front of wall

/1 calibrate nearest front sensor distance
FRONT_OBSTACLE = 0;

out put _bi t (SENSOR_LED, 1);

del ay_ns(SENSOR_VALI D_DELAY*10) ;

set _adc_channel (OBSTACLE_FRONT);

del ay_us(10);

FRONT_OBSTACLE += read_adc();

out put _bi t (SENSOR_LED, 0);

cal i bration_stage++;

}

else if (calibration_stage == 1)

{
/1 calibrate nearest acceptable left and farthest acceptable right
/1 (before off-centre adjustment takes effect)
MAX_LEFT = 0;
out put _bi t (SENSOR_LED, 1);
del ay_ns(SENSOR_VALI D_DELAY*10) ;
set _adc_channel (OBSTACLE_LEFT);
del ay_us(10);
MAX_LEFT += read_adc();
out put _bi t (SENSOR_LED, 0);
cal i bration_stage++;

}

else if (calibration_stage == 2)

{
/1 calibrate nearest acceptable right (before off-centre adjustnment takes

ef fect)

MAX_RI GHT = 0;
M DDLE_LEFT = 0;
out put _bi t (SENSOR_LED, 1);
del ay_ns(SENSOR_VALI D_DELAY*10) ;
set _adc_channel (OBSTACLE_RI GHT);
del ay_us(10);
MAX_RI GHT += read_adc();
out put _bi t (SENSOR_LED, 0);
cal i bration_stage++;

}

else if (calibration_stage == 3)
/1 calibrate far left (no wall on left sensor)
M N_LEFT = 0;
out put _bi t (SENSOR_LED, 1);
del ay_ns(SENSOR_VALI D_DELAY*10) ;
set _adc_channel (OBSTACLE_LEFT);
del ay_us(10);
M N_LEFT += read_adc();
out put _bi t (SENSOR_LED, 0);
cal i bration_stage++;

}

else if (calibration_stage == 4)
/1 calibrate far right (no wall on right sensor)
M N_RI GHT = 0;
out put _bi t (SENSOR_LED, 1);
del ay_ns(SENSOR_VALI D_DELAY*10) ;
set _adc_channel (OBSTACLE_RI GHT);
del ay_us(10);
M N_RI GHT += read_adc();
out put _bi t (SENSOR_LED, 0);
cal i bration_stage++;

}

else if (calibration_stage == 5)
initial _start = 1;

}

}
del ay_ns(5000) ;
for(5 1)

whi l e | oop)

int) (ob_right

be one

/1 Look for Pac-Man's beacon signal
read_beacon(beacon_f, beacon_|, beacon_b, beacon_r);

if (beacon_m nval (beacon_f, beacon_|, beacon_b, beacon_r) > FAR)

pacpos_unknown = 1;

esti mat e_Pac- Man(Pac- Man_pos_x, Pac-Man_pos_y, beacon_f, beacon_b, beacon_|, beacon_r);
sol ve(Pac- Man_pos_x, Pac-Man_pos_y);
next _nove = read_bank(3, 0);
for (i =0; next_nove != 0; i++)
{
if (pacpos_unknown)
{
read_beacon(beacon_f, beacon_|, beacon_b, beacon_r);
if (beacon_m nval (beacon_f, beacon_|, beacon_b, beacon_r) < FAR)
br eak;
}
next _nove = read_bank(3, i);
if (next_nove == NORTH)
{
current _y_pos--;
nove(N);
}
else if (next_nove == EAST)

MAX_RI GHT)))

stop = 1;

current _X_pos++;
nove(E);

}

else if (next_nove == SOUTH)

{
current _y_pos++;
move(S);

}

else if (next_nove == WEST)
current _x_pos--;
nove(W);

}

while (!next_nove_ready) // while not ready, adjust position (make all bel ow inside the

{

read_obstacl es(ob_left, ob_front, ob_right);

if (ob_front > FRONT_OBSTACLE)

{
stop = 1;
}
el se
stop = 0;
if (!turn_enable)
{
if ((ob_left > MAX_LEFT) || (ob_right > MAX_RIGHT))
{
if(((signed int)(ob_left - MAX_LEFT)) < ((signed
{
/1 adjust to right
adj ust _right = 1;
adj ust_left = 0;
}
else // closer to right
{
/1 adjust to left
adj ust_left = 1;
adj ust _right = 0;
}
}
}

}

/1 recalibrate CGhost's known position if currently facing a wall
if (wall_exists(current_x_pos, current_y_pos, current_orient))

{
while (ob_front < FRONT_OBSTACLE) // if no front wall found when there should
{
/1 move forward until there is a front obstacle
read_obstacl es(ob_left, ob_front, ob_right);
go_forward();
}
stop = 1;
}

	APPENDIX A: Photo Gallery
	APPENDIX B: PCB Layouts
	APPENDIX C: Expense Report
	L
	List of Tables
	List of Figures
	Abstract
	1.0	Introduction
	2.0	Chassis
	2.1	Motor Mounts
	2.2	PCB Mounts
	2.3	Body

	3.0	Motors
	3.1	Motor Selection
	3.2	Motor Control

	4.0	Radio Frequency Application
	RF Considerations
	4.2	Wireless Input Controller
	4.2.1	Encoding scheme logic
	4.2.2	Encoder and Decoder
	4.2.2.1	Error detection and filtering

	4.2.3	RF Modules

	5.0	Sensors
	5.1	Wall detection
	5.2	Dot Counting Sensor
	5.3	Pac-Man Tracking
	5.4	Contact Sensor
	5.5	LCD display

	6.0	Microcontroller and Software
	6.1	Pac-Man Robot
	6.1.1	Obstacle Sensors
	6.1.2	LCD Display
	6.1.3	RF Receiver
	6.1.4	Stepper Motors
	6.1.4	Stepper Motors
	6.1.5	Ghost Contact Sensor
	6.1.6	Maze Dot Sensor

	6.2	Ghost Robot
	6.2.1	Beacon Sensor

	7.0	Maze
	7.1	Physical Dimension
	7.2	Dots

	8.0	Power
	8.1	Motor
	8.2	Controller
	8.3	Maze
	8.4	Regulators

	9.0	Recommendations
	
	
	
	RF
	Beacon
	LCD
	Microcontroller
	Motor
	Power

	10.0	Conclusion
	
	
	
	
	APPENDIX A: Photo Gallery

	A
	
	
	
	
	APPENDIX B: PCB Layouts
	Pac-Man

	Ghost
	Controller
	Maze

	APPENDIX D: Gantt chart

