
1

Hardware and software
resources on the AVR

family for the
microcontroller project

2

1. Code Vision

 The C Compiler you use: CodeVisionAVR (CVAVR)

 Where can you find it? a (limited) version is

available free of charge at:

http://www.hpinfotech.ro/html/download.htm

 See appnote (in English) at
http://http://ham.elcom.pub.ro/proiect2/files/AtmelCVAVR.pdf

3

2. Serial ports

 the uC contains the “intelligence”

 it uses pins RxD, TxD

 MAX232, MAX202 etc: electrical level

conversion (no “intelligence”)

 Logic Levels: “0” and “1” logic;

 Electrical Levels:

 the uC uses TTL: “0” = 0V, “1” = 5V

 the serial line uses RS232: “0” = +12V, “1”=“-12V”

 lines are kept at “1” while idle

 the “intelligence” means adding the start and

stop bits and removing them upon reception

4

Serial ports

 one character structure: 1 start bit, 8 data bits (8D), 1 stop bit

 the 10 bits on the picture: START, 8D, STOP = 0101010101

 NOTE: LSB is transmitted first (so MSB is adjacent to the stop bit)

so the 8 bit number must be read from right to left: 01010101

5

RS232 (+/-10V) - TTL (0-5V) conversion

6

USB- TTL (0-5V) conversion

uP USB

RXD TXD

TXD RXD

GND GND

 The USB protocol is MUCH more complex than TTL/RS232 !

 The USB-TTL conversion is NOT just a logic level conversion !

 Waveforms on the USB lines use a different speed, include USB host/device

arbitration, multiple devices on the same bus etc

 The USB-TTL chip (CH340) is a complex integrated circuit

 You should ONLY view the TTL waveforms on the RXD, TXD pins.

7

USB- TTL adapter

 The schematic of the USB-TTL adaptar is shown for reference

 D1,D2 are used to lower the 5V voltage to 3.3V (5-0.7-0.7V)

 The jumper on pins 1-2 shorts these diodes so the full 5V is supplied on pin 2

 The 3.3V – 5V jumper should be placed on 5V UNLESS you explicitly modify your

own board for 3.3V operation

 Plug the USB-TTL adapter into the PC – a new COM Port (called a „virtual” COM

port) will appear (usually COM3 or higher)

8

Waveform viewing on the scope

 worth 10% of your grade !

 10 bits · 1/9600 sec/bit ≈ 1ms

 10 divisions on the x axis 1 bit = 1 div (horizontal)

 1 bit/div CX = 0.1 ms/div

 Cy = 5V/div = 1 div (vertical) for TTL

 Trigger slope = falling slope for TTL

 Why ? see the TTL waveform on the previous page

 Look for the Cy, Cx, trigger settings on the scope !

9Cy [V/div] = setting 10; Cx[sec/div] = setting 14; Trigger Slope=setting 19

1 2

3

6

4 5

8 7

9 10

11
12 13 14

16

15

17

18 19

20
21

22

23

24 25 26

27

Using an analog scope

10

 Using the Horizontal Position knob you should move the trigger moment to the

left of the screen in order to see the bits as described

 Note some scopes have more than 10 horiz. divisions (above: 12 divisions)

T = Trigger moment, by default on the CENTER of the screen

Using a digital scope

11

Powering the board via USB

 You can power via USB and eliminate the need for an external power source
on CN3; for this, you must properly select J1

 The schematic of the power section of your board is above; Vcc is the power
pin of the uP and all other components
 J1 = 1-2 : external power

 J1 = 2-3 : USB power

 F1 must pe soldered (either a 1206 Polyfuse or a simple wire can be used)

 Either CN2B going to the USB-TTL adapter must be used, OR the „USB
Type B” connector CN5.

12

Powering the board

via USB using the

USB-TTL adapter

 If you decide to power your board with 3V, you must cut the connection
between 2-3 and solder a wire between 1-2 of CN2B

 You must use 6 wires for CN2
and CN2B, not just 3 wires for
data !

 You connect 6 wires to all 6 pins
of the USB-TTL adapter

 Now you don’t have space to put
the yellow jumper on the USB-
TTL adapter !

 To solve this, there is already a
connection between 2 and 3 of
CN2B on your board

13

Serial port communications

 2 useful applications of the serial port

 bootloader, for loading the application (see later)

 debugging using the serial port: on the PC, use a Terminal

program (e.g. Windows HyperTerminal, or the terminal in

CodeVision) which becomes a terminal for your PCB

(extends the PC’s keyboard and screen as if it were your

PCB’s keyboard and screen)

14

Programing an application
 input files: *.c, *.h, etc

 output file: *.hex (the format is called Intel HEX but is not
used only on Intel)

1. classical programming: the uC is taken off the board and
plugged in a dedicated programmer

2. in-system programming: the uC remains in its socket and the
ISP connector is used to connect to an external programmer

3. bootloader programming: the boot loader is a special
program, similar to an operating system, preloaded in the uC
(using method 1 or 2 but only once), which accepts the
application program via a serial port (or USB, ethernet, etc)

Bootloader disadvantages: written for a specific processor and
clock; needs a button on PORTD.5; doesn’t run on Linux.

15

3. Program loading into the uC using

bootloader/PCLoader
 Boot Loader = a program already loaded into the uC, before I

give you the chip

 PC Loader = runs on the PC (Windows)

 they use the serial port for communication

 Boot Loader = equivalent of a micro-OS

 only function: application loading

 Boot Loader is loaded at the top of the memory and cannot be
overwritten by the application

 the uC’s Flash memory contains the Boot Loader and the

application program

 no multitasking the 2 do not run simultaneously

 the Boot Loader runs at power-up (or Reset) if the button is

pressed; else the application runs.

16

PC Loader = AVR Buster

 Select the COM port

 Only COM1 to COM4 can be used

 If using the USB-TTL, the virtual COM can be sometimes greater than 4

 To solve this, use Windows Device Manager, serial port, Advanced
properties and select a lower COM (even if it says „in use”)

17

Use of the AVR Buster

1. Select COM1 or COM2 for RS232 ports (physical ports on the

back of the PC)

2. Select COM3 or higher for USB virtual ports

3. Using Browse load the .HEX file to be uploaded (do NOT load

a .c or .h or .prj file – only HEX are executables!)

4. Start Upload

5. power up the board while holding the button (OR reset the

board while holding the button); the LED will not blink, since

this is an application function

6. Error message “Error Accessing COM Port” = another

program (typically, Code Vision) is using the port; use

Disconnect in the Code Vision Terminal

18

Circuit schematic – you assemble it on your board

 the power section was shown on a previous slide and it provides Vcc

 the ISP connector is for an optional external programmer (not needed since we have the boot
loader)

19

Circuit layout

Top layer Bottom Layer

20

I/O Pins used as inputs and outputs

 Input pins:

 Initialize with DDRX.Y = 0

 Set PORTX.Y = 1 to enable the internal pull-up resistor

 By default, set PORTX.Y = 0 (no pull-ul resistor)

 Read value using PINX.Y
Example:

If(PIND.5 == 0) // read switch connected on D.5

LED = 1

 Output pins:

 Initialize with DDRX.Y = 1

 Write value using PORTX.Y
Example:

PORTD.6 = 1 // light up LED connected on D.6

 Note: you can access all 8 pins of a port at a time:

PORTD = 0b11101011

21

I/O Port schematic for input

 A port pin used as an input

 You can enable the pull-up resistor (Rpu) in software

 Example: PORT D.5:

 DDRD = 0b00000000 // Direction register; 0 = input

 PORTD = 0b00100000 // 1 on an input pin = pull-up enabled

22

Interrupts

 External interrups: the are called when:

 a certain pin becomes 0 or 1

 a character is received on the serial port, etc

 Internal interrupts:

 a timer register reaches a certain value (a certain time is reached)

 an A/D conversion is ready, etc

 See datasheet for a complete list for the AT Mega 16

 in the software, an interrupt is serviced by a C function called ISR (Interrupt
Service Routine)

 See the test program for an example using the timer interrupt

23

Timers

 Timer 0,1,2

 8 bits or 16 bits

 source: internal or external clock, with or without prescaler

 Many operating modes, see the datasheet for full details

 example: Timer1 in CTC mode (Clear Timer on Compare Match)

 the selected clock source increments the timer

 the current value is held in TCNT1 (starts at 0)

 when TCNT1 = OCRA1, an interrupt is issued and the timer is reset

 by choosing OCR1A and the clock frequency, the timer can be programmed for

any time interval

 dt is the clock period divided by the

prescaler you choose

24

Timer calculations

 How do I set the value of a control register ?

 The next tables are taken from the datasheet.

 RTFM ! (Read The Fine Manual) - the At Mega 16 datasheet, available
either on Atmel’s site or at:

http://ham.elcom.pub.ro/proiect2/files/atmega16.pdf

 Prescaler: frequency divider, having a fixed set of values (e.g. 8, 64, 256,
1024); setting the prescaler changes the dt (basic timer interval, equal to the
minimum amount of time).

 example: we want to program a 1-second interval using Timer1: look at the
blue arrow:

25

Registers for Timer/Counter 1

→

26

Timer/Counter 1

 we want 1 s = low frequency

 Example: fCrystal =13.5MHz→division by 13,500,000 > 65536 (16 bits) →

impossible

 we need the prescaler to divide some more

 prescaler: max divisor = 1024; 13.5MHz / 1024 = 13.184KHz

 we want 1Hz: we div ide again by 13184 = 3380h

 OCR1AH = 33h, OCR1AL = 80h

 we select the CTC mode; let’s set the remaining registers

 from the 2 previous tables: TCCR1A = 0 and

 TCCR1B= 00001101 = 0Dh

27

Good News !

 All these calculations can be done using CodeWizard

 You still need to read the datasheet for the explanation of the different
modes

28

PWM Mode

 the PWM mode: useful for setting the speed of a motor or the light intensity
of a light source

 example: use of the timer/counter0 in PWM mode to set the intensity level
of a LED

 TPWM is fixed; should be short enough to avoid flicker – if you choose a flicker-free

frequency of 200Hz, then TPWM= 1/200Hz = 5ms

 T1 < T2; the longer this interval, the longer you keep the LED on

 connect the LED to pin OC0 so it is turned on automatically when TCNT0< OCR0 and

turned off when TCNT0 >= OCR0

 by changing the value OCR0, you change T1 and the intensity changes

29

Timer/Counter 0 Control Register

30

How to calculate the PWM frequency

 PWM → the frequency is constant, the duty cycle varies

 Example: assume fcrystal = 13.5MHz

 We divide by:

 prescaler: max 1024

 maximum value for the 8 bit timer register: 256

 we have fPWM = 13500000/1024/256 = 51 Hz

 Note: 51Hz is enough for light bulbs or motors, but a 51Hz flicker is visible on

LEDs

 we choose a lower prescaler: 256

 fPWM = 13500000/256/256 = 205 Hz

 Prescaler=256 → CS02:00 = 100 (see previous table)

31

Timer/Counter 0 Control Register

 table COM 01:00 is for the Fast PWM mode

 we choose WGM 01:00 = 11, COM 01:00 = 10 CS 02:00 = 100

 the final value is: TCCR0 = 01101100 = 6Ch

32

Good news !

 CodeWizard again

33

Sample program in PWM mode

// timer0 init in PWM

// Clock source: System Clock/256, Clock value: 52734 Hz, Mode: Fast PWM top=FFh, OC0: Non-

Inverted PWM

TCCR0=0x6C;

TCNT0=0x00;

OCR0=0x00;

// in PWM mode the OC0 pin is changed automatically so we don’t need a timer interrupt !

// 4 different light intensities for LED, set using 4 different values of the OCR0 register

// pause 1 second between each intensity change

void main (void)

{

while(TRUE)

{

OCR0 = 0; delay_ms(1000); // no light

OCR0 = 4; delay_ms(1000); // little light

OCR0 = 16; delay_ms(1000); // medium light

OCR0 = 253; delay_ms(1000); // full light

}

}

34

Sensors

 Digital sensors (TTL)

 examples: contact switches, magnetic switches, optical switches, etc

 states: LO and HI (only 2 values)

 read on an input pin (PINX.y, not PORTX.y)

 you may user a pull-up resistor so the HI state is default; pull LO by connecting

the pin to ground see the first circuit

 internal pull-up: activate using PORTX.y=1 when the direction is set to “input”

(DDRX.y=0)

 use the same for analog sensors, when you need to detect the crossing of a

treshold

 Analog sensors

 many values (8 bits = 256 values; 10 bits = 1024 values)

 use the internal A/D converter

 8 channels are built-in so you can read 8 separate inputs

35

Analog example: light sensor

 AO = 1/2 LM358 (-Vcc = 0V, +Vcc = +5V)

 The photodiode is reverse biased so we measure its dark current

 R1 = tens of KΩ up to 1M Ω

36

The Analog to Digital Converter (ADC)

 Specifications: Successive aproximations type

 kSPS = kilo Samples per Second

 Control registers: ADMUX, ADCSRA

37

ADC

 REFS: choose the reference

 differential modes also exist;

 ADLAR = AD Left Adjust Result

 use ADLAR=1 if only 8 bits are needed; read only ADCH, containing the most

significant 8 bits;

 if you need 10b → ADLAR=0, read ADCH, ADCL

 careful with the analog part if you want to use 10b !

 Input pins are AD0 to AD7 (on AT MEGA 16, pins 40 downto 33)

38

ADC

 ADEN = ADC Enable

 ADSC = ADC Start Conversion; set to 1 to start a conversion in Single Conversion

mode; in Free Running mode, set to 1 at the beginning

 ADATE = ADC Auto Trigger Enable; is used together with SFIOR

 ADIF = ADC Interrupt Flag; becomes 1 when the conversion is ready; automatically

becomes 0 if the ADC ISR is executed (if ADC interrupts active)

 ADIE = ADC Interrupt Enable; also must set bit “I” in SREG

 ADPS 2:0 = prescaler for the ADC clock (= Crystal clock/prescaler)

39

ADC

 Example: measuring a voltage larger than the reference voltage using the ADC

 R10, R11 form a divider which reduces Ux with the ratio K = 2.2/ (22+2.2) = 0.0909

 AD0 will read a voltage U0 corresponding to a number N (assuming 10 bits)

U0 / 2.56V = N / 1024

 (we assume that you select the Uref=2.56V which is more precise, using REFS0,1)

 thus, you calculate Ux in the software:

Ux = 2.56V / 1024 * N / K or Ux = 0.0275 N [V]

 if you use only 8 bits:

Ux = 2.56V / 256 * N / K or Ux = 0.11 N [V]

 C5 is optional, however it filters noise, by forming a LPF with R10.

40

Example use of ADC in Single conversion mode

#define ADMUX_NOCHANNEL 0b00100000 // see below ADMUX initialization

void init_adc(void)

{

// ADCSRA initialization; in order from MSB:

// 10 = enable ADC, do not start a conversion yet

// 0 = disable free-running mode

// 10 = clear ADIF interrupt flag, disable ints

// 101 = ADC clock =XTAL/32

ADCSRA=0b10010101;

// ADMUX initialization

// 11 = internal VREF=2.56V ***OR*** 00=AREF= external reference on AREF pin

// 1 = ADLAR=1 (left adjust, use only 8 bits)

// the rest: channel selection

ADMUX=ADMUX_NOCHANNEL; // external AREF, ADLAR=1

}

// channel can be 0 to 7;

float read_voltage(byte channel)
{

channel &= 0b00000111; // 8 channels are possible

ADMUX = ADMUX_NOCHANNEL | channel;

ADCSRA |= 0b01000000; // start conversion

while (ADCSRA & 0b01000000); // wait for result in ADIF flag

ADCSRA |= 0b00010000; // clear ADIF flag

return 0.11 * (float)ADCH; // return value directly in volts

}

