
1

Hardware and software
resources on the AVR

family for the
microcontroller project

2

1. Code Vision

 The C Compiler you use: CodeVisionAVR (CVAVR)

 Where can you find it? a (limited) version is

available free of charge at:

http://www.hpinfotech.ro/html/download.htm

 See appnote (in English) at
http://http://ham.elcom.pub.ro/proiect2/files/AtmelCVAVR.pdf

3

2. Serial ports

 the uC contains the “intelligence”

 it uses pins RxD, TxD

 MAX232, MAX202 etc: electrical level

conversion (no “intelligence”)

 Logic Levels: “0” and “1” logic;

 Electrical Levels:

 the uC uses TTL: “0” = 0V, “1” = 5V

 the serial line uses RS232: “0” = +12V, “1”=“-12V”

 lines are kept at “1” while idle

 the “intelligence” means adding the start and

stop bits and removing them upon reception

4

Serial ports

 one character structure: 1 start bit, 8 data bits (8D), 1 stop bit

 the 10 bits on the picture: START, 8D, STOP = 0101010101

 NOTE: LSB is transmitted first (so MSB is adjacent to the stop bit)

so the 8 bit number must be read from right to left: 01010101

5

RS232 (+/-10V) - TTL (0-5V) conversion

6

USB- TTL (0-5V) conversion

uP USB

RXD TXD

TXD RXD

GND GND

 The USB protocol is MUCH more complex than TTL/RS232 !

 The USB-TTL conversion is NOT just a logic level conversion !

 Waveforms on the USB lines use a different speed, include USB host/device

arbitration, multiple devices on the same bus etc

 The USB-TTL chip (CH340) is a complex integrated circuit

 You should ONLY view the TTL waveforms on the RXD, TXD pins.

7

USB- TTL adapter

 The schematic of the USB-TTL adaptar is shown for reference

 D1,D2 are used to lower the 5V voltage to 3.3V (5-0.7-0.7V)

 The jumper on pins 1-2 shorts these diodes so the full 5V is supplied on pin 2

 The 3.3V – 5V jumper should be placed on 5V UNLESS you explicitly modify your

own board for 3.3V operation

 Plug the USB-TTL adapter into the PC – a new COM Port (called a „virtual” COM

port) will appear (usually COM3 or higher)

8

Waveform viewing on the scope

 worth 10% of your grade !

 10 bits · 1/9600 sec/bit ≈ 1ms

 10 divisions on the x axis  1 bit = 1 div (horizontal)

 1 bit/div  CX = 0.1 ms/div

 Cy = 5V/div = 1 div (vertical) for TTL

 Trigger slope = falling slope for TTL

 Why ? see the TTL waveform on the previous page

 Look for the Cy, Cx, trigger settings on the scope !

9Cy [V/div] = setting 10; Cx[sec/div] = setting 14; Trigger Slope=setting 19

1 2

3

6

4 5

8 7

9 10

11
12 13 14

16

15

17

18 19

20
21

22

23

24 25 26

27

Using an analog scope

10

 Using the Horizontal Position knob you should move the trigger moment to the

left of the screen in order to see the bits as described

 Note some scopes have more than 10 horiz. divisions (above: 12 divisions)

T = Trigger moment, by default on the CENTER of the screen

Using a digital scope

11

Powering the board via USB

 You can power via USB and eliminate the need for an external power source
on CN3; for this, you must properly select J1

 The schematic of the power section of your board is above; Vcc is the power
pin of the uP and all other components
 J1 = 1-2 : external power

 J1 = 2-3 : USB power

 F1 must pe soldered (either a 1206 Polyfuse or a simple wire can be used)

 Either CN2B going to the USB-TTL adapter must be used, OR the „USB
Type B” connector CN5.

12

Powering the board

via USB using the

USB-TTL adapter

 If you decide to power your board with 3V, you must cut the connection
between 2-3 and solder a wire between 1-2 of CN2B

 You must use 6 wires for CN2
and CN2B, not just 3 wires for
data !

 You connect 6 wires to all 6 pins
of the USB-TTL adapter

 Now you don’t have space to put
the yellow jumper on the USB-
TTL adapter !

 To solve this, there is already a
connection between 2 and 3 of
CN2B on your board

13

Serial port communications

 2 useful applications of the serial port

 bootloader, for loading the application (see later)

 debugging using the serial port: on the PC, use a Terminal

program (e.g. Windows HyperTerminal, or the terminal in

CodeVision) which becomes a terminal for your PCB

(extends the PC’s keyboard and screen as if it were your

PCB’s keyboard and screen)

14

Programing an application
 input files: *.c, *.h, etc

 output file: *.hex (the format is called Intel HEX but is not
used only on Intel)

1. classical programming: the uC is taken off the board and
plugged in a dedicated programmer

2. in-system programming: the uC remains in its socket and the
ISP connector is used to connect to an external programmer

3. bootloader programming: the boot loader is a special
program, similar to an operating system, preloaded in the uC
(using method 1 or 2 but only once), which accepts the
application program via a serial port (or USB, ethernet, etc)

Bootloader disadvantages: written for a specific processor and
clock; needs a button on PORTD.5; doesn’t run on Linux.

15

3. Program loading into the uC using

bootloader/PCLoader
 Boot Loader = a program already loaded into the uC, before I

give you the chip

 PC Loader = runs on the PC (Windows)

 they use the serial port for communication

 Boot Loader = equivalent of a micro-OS

 only function: application loading

 Boot Loader is loaded at the top of the memory and cannot be
overwritten by the application

 the uC’s Flash memory contains the Boot Loader and the

application program

 no multitasking  the 2 do not run simultaneously

 the Boot Loader runs at power-up (or Reset) if the button is

pressed; else the application runs.

16

PC Loader = AVR Buster

 Select the COM port

 Only COM1 to COM4 can be used

 If using the USB-TTL, the virtual COM can be sometimes greater than 4

 To solve this, use Windows Device Manager, serial port, Advanced
properties and select a lower COM (even if it says „in use”)

17

Use of the AVR Buster

1. Select COM1 or COM2 for RS232 ports (physical ports on the

back of the PC)

2. Select COM3 or higher for USB virtual ports

3. Using Browse load the .HEX file to be uploaded (do NOT load

a .c or .h or .prj file – only HEX are executables!)

4. Start Upload

5. power up the board while holding the button (OR reset the

board while holding the button); the LED will not blink, since

this is an application function

6. Error message “Error Accessing COM Port” = another

program (typically, Code Vision) is using the port; use

Disconnect in the Code Vision Terminal

18

Circuit schematic – you assemble it on your board

 the power section was shown on a previous slide and it provides Vcc

 the ISP connector is for an optional external programmer (not needed since we have the boot
loader)

19

Circuit layout

Top layer Bottom Layer

20

I/O Pins used as inputs and outputs

 Input pins:

 Initialize with DDRX.Y = 0

 Set PORTX.Y = 1 to enable the internal pull-up resistor

 By default, set PORTX.Y = 0 (no pull-ul resistor)

 Read value using PINX.Y
Example:

If(PIND.5 == 0) // read switch connected on D.5

LED = 1

 Output pins:

 Initialize with DDRX.Y = 1

 Write value using PORTX.Y
Example:

PORTD.6 = 1 // light up LED connected on D.6

 Note: you can access all 8 pins of a port at a time:

PORTD = 0b11101011

21

I/O Port schematic for input

 A port pin used as an input

 You can enable the pull-up resistor (Rpu) in software

 Example: PORT D.5:

 DDRD = 0b00000000 // Direction register; 0 = input

 PORTD = 0b00100000 // 1 on an input pin = pull-up enabled

22

Interrupts

 External interrups: the are called when:

 a certain pin becomes 0 or 1

 a character is received on the serial port, etc

 Internal interrupts:

 a timer register reaches a certain value (a certain time is reached)

 an A/D conversion is ready, etc

 See datasheet for a complete list for the AT Mega 16

 in the software, an interrupt is serviced by a C function called ISR (Interrupt
Service Routine)

 See the test program for an example using the timer interrupt

23

Timers

 Timer 0,1,2

 8 bits or 16 bits

 source: internal or external clock, with or without prescaler

 Many operating modes, see the datasheet for full details

 example: Timer1 in CTC mode (Clear Timer on Compare Match)

 the selected clock source increments the timer

 the current value is held in TCNT1 (starts at 0)

 when TCNT1 = OCRA1, an interrupt is issued and the timer is reset

 by choosing OCR1A and the clock frequency, the timer can be programmed for

any time interval

 dt is the clock period divided by the

prescaler you choose

24

Timer calculations

 How do I set the value of a control register ?

 The next tables are taken from the datasheet.

 RTFM ! (Read The Fine Manual) - the At Mega 16 datasheet, available
either on Atmel’s site or at:

http://ham.elcom.pub.ro/proiect2/files/atmega16.pdf

 Prescaler: frequency divider, having a fixed set of values (e.g. 8, 64, 256,
1024); setting the prescaler changes the dt (basic timer interval, equal to the
minimum amount of time).

 example: we want to program a 1-second interval using Timer1: look at the
blue arrow:

25

Registers for Timer/Counter 1

→

26

Timer/Counter 1

 we want 1 s = low frequency

 Example: fCrystal =13.5MHz→division by 13,500,000 > 65536 (16 bits) →

impossible

 we need the prescaler to divide some more

 prescaler: max divisor = 1024; 13.5MHz / 1024 = 13.184KHz

 we want 1Hz: we div ide again by 13184 = 3380h

 OCR1AH = 33h, OCR1AL = 80h

 we select the CTC mode; let’s set the remaining registers

 from the 2 previous tables: TCCR1A = 0 and

 TCCR1B= 00001101 = 0Dh

27

Good News !

 All these calculations can be done using CodeWizard

 You still need to read the datasheet for the explanation of the different
modes

28

PWM Mode

 the PWM mode: useful for setting the speed of a motor or the light intensity
of a light source

 example: use of the timer/counter0 in PWM mode to set the intensity level
of a LED

 TPWM is fixed; should be short enough to avoid flicker – if you choose a flicker-free

frequency of 200Hz, then TPWM= 1/200Hz = 5ms

 T1 < T2; the longer this interval, the longer you keep the LED on

 connect the LED to pin OC0 so it is turned on automatically when TCNT0< OCR0 and

turned off when TCNT0 >= OCR0

 by changing the value OCR0, you change T1 and the intensity changes

29

Timer/Counter 0 Control Register

30

How to calculate the PWM frequency

 PWM → the frequency is constant, the duty cycle varies

 Example: assume fcrystal = 13.5MHz

 We divide by:

 prescaler: max 1024

 maximum value for the 8 bit timer register: 256

 we have fPWM = 13500000/1024/256 = 51 Hz

 Note: 51Hz is enough for light bulbs or motors, but a 51Hz flicker is visible on

LEDs

 we choose a lower prescaler: 256

 fPWM = 13500000/256/256 = 205 Hz

 Prescaler=256 → CS02:00 = 100 (see previous table)

31

Timer/Counter 0 Control Register

 table COM 01:00 is for the Fast PWM mode

 we choose WGM 01:00 = 11, COM 01:00 = 10 CS 02:00 = 100

 the final value is: TCCR0 = 01101100 = 6Ch

32

Good news !

 CodeWizard again

33

Sample program in PWM mode

// timer0 init in PWM

// Clock source: System Clock/256, Clock value: 52734 Hz, Mode: Fast PWM top=FFh, OC0: Non-

Inverted PWM

TCCR0=0x6C;

TCNT0=0x00;

OCR0=0x00;

// in PWM mode the OC0 pin is changed automatically so we don’t need a timer interrupt !

// 4 different light intensities for LED, set using 4 different values of the OCR0 register

// pause 1 second between each intensity change

void main (void)

{

while(TRUE)

{

OCR0 = 0; delay_ms(1000); // no light

OCR0 = 4; delay_ms(1000); // little light

OCR0 = 16; delay_ms(1000); // medium light

OCR0 = 253; delay_ms(1000); // full light

}

}

34

Sensors

 Digital sensors (TTL)

 examples: contact switches, magnetic switches, optical switches, etc

 states: LO and HI (only 2 values)

 read on an input pin (PINX.y, not PORTX.y)

 you may user a pull-up resistor so the HI state is default; pull LO by connecting

the pin to ground  see the first circuit

 internal pull-up: activate using PORTX.y=1 when the direction is set to “input”

(DDRX.y=0)

 use the same for analog sensors, when you need to detect the crossing of a

treshold

 Analog sensors

 many values (8 bits = 256 values; 10 bits = 1024 values)

 use the internal A/D converter

 8 channels are built-in so you can read 8 separate inputs

35

Analog example: light sensor

 AO = 1/2 LM358 (-Vcc = 0V, +Vcc = +5V)

 The photodiode is reverse biased so we measure its dark current

 R1 = tens of KΩ up to 1M Ω

36

The Analog to Digital Converter (ADC)

 Specifications: Successive aproximations type

 kSPS = kilo Samples per Second

 Control registers: ADMUX, ADCSRA

37

ADC

 REFS: choose the reference

 differential modes also exist;

 ADLAR = AD Left Adjust Result

 use ADLAR=1 if only 8 bits are needed; read only ADCH, containing the most

significant 8 bits;

 if you need 10b → ADLAR=0, read ADCH, ADCL

 careful with the analog part if you want to use 10b !

 Input pins are AD0 to AD7 (on AT MEGA 16, pins 40 downto 33)

38

ADC

 ADEN = ADC Enable

 ADSC = ADC Start Conversion; set to 1 to start a conversion in Single Conversion

mode; in Free Running mode, set to 1 at the beginning

 ADATE = ADC Auto Trigger Enable; is used together with SFIOR

 ADIF = ADC Interrupt Flag; becomes 1 when the conversion is ready; automatically

becomes 0 if the ADC ISR is executed (if ADC interrupts active)

 ADIE = ADC Interrupt Enable; also must set bit “I” in SREG

 ADPS 2:0 = prescaler for the ADC clock (= Crystal clock/prescaler)

39

ADC

 Example: measuring a voltage larger than the reference voltage using the ADC

 R10, R11 form a divider which reduces Ux with the ratio K = 2.2/ (22+2.2) = 0.0909

 AD0 will read a voltage U0 corresponding to a number N (assuming 10 bits)

U0 / 2.56V = N / 1024

 (we assume that you select the Uref=2.56V which is more precise, using REFS0,1)

 thus, you calculate Ux in the software:

Ux = 2.56V / 1024 * N / K or Ux = 0.0275 N [V]

 if you use only 8 bits:

Ux = 2.56V / 256 * N / K or Ux = 0.11 N [V]

 C5 is optional, however it filters noise, by forming a LPF with R10.

40

Example use of ADC in Single conversion mode

#define ADMUX_NOCHANNEL 0b00100000 // see below ADMUX initialization

void init_adc(void)

{

// ADCSRA initialization; in order from MSB:

// 10 = enable ADC, do not start a conversion yet

// 0 = disable free-running mode

// 10 = clear ADIF interrupt flag, disable ints

// 101 = ADC clock =XTAL/32

ADCSRA=0b10010101;

// ADMUX initialization

// 11 = internal VREF=2.56V ***OR*** 00=AREF= external reference on AREF pin

// 1 = ADLAR=1 (left adjust, use only 8 bits)

// the rest: channel selection

ADMUX=ADMUX_NOCHANNEL; // external AREF, ADLAR=1

}

// channel can be 0 to 7;

float read_voltage(byte channel)
{

channel &= 0b00000111; // 8 channels are possible

ADMUX = ADMUX_NOCHANNEL | channel;

ADCSRA |= 0b01000000; // start conversion

while (ADCSRA & 0b01000000); // wait for result in ADIF flag

ADCSRA |= 0b00010000; // clear ADIF flag

return 0.11 * (float)ADCH; // return value directly in volts

}

