Hardware and software
resources on the AVR

family for the
microcontroller project

" A
1. Code Vision

m The C Compiler you use: CodeVisionAVR (CVAVR)

m Where can you find it? a (limited) version is
available free of charge at:

http://www.hpinfotech.ro/html/download.htm

m See appnote (in English) at
http://http://ham.elcom.pub.ro/proiect2/files/AtmelCVAVR.pdf

2. Serial ports
m the uC contains the “intelligence”
m it uses pins RxD, TxD

m MAX232, MAX202 etc: electrical level
conversion (no “intelligence”)

m Logic Levels: “0” and “1” logic;
m Electrical Levels:

the uC uses TTL: “0” =0V, “1” =5V
the serial line uses RS232: “0” = +12V, “1”="-12V”

m lines are kept at “1” while idle

m the “intelligence” means adding the start and
stop bits and removing them upon reception

"

-l_l-l_ | 5B MSB
A L J v
oV | N101011001.
****+*+i4T >
2 DATE
START ke
Procesar (TTL)

Serial ports

L'sH MiSB
e Yy
10V I:Ill-lll_ll.llxllll
8 DATE
START STOP
DBY9 (RS232)
MAX232 N

one character structure: 1 start bit, 8 data biis (8D), 1 stop bit

the 10 bits on the picture: START, 8D, STOP =0101010101
NOTE: LSB is transmitted first (so MSB is adjacent to the stop bit)
so the 8 bit number must be read from right to left: 01010107

RS232 (+/-10V) - TTL (0-5V) conversion

DBAa female
VT
o}l o T
o—t2 g
o =
- ; = 13
o1 o | RN U R1OUT
S Ea— G—y Rz % R2OUT
e TZD < | 1o | T T1oUT
G—E—El c7 + BE——T2IM TzoUT
— ||| 1UF ﬁ\‘| | 13::+
F1 ﬁllll 4 -
T C2+
cs [f 5
1uF | 2 | =< o
B |*F =
+ V- =
o= S TE
1UF oo 2 maxz
o 1uF —_
Voo —

"

USB- TTL (0-5V) conversion

m The USB protocol is MUCH more complex than TTL/RS232 !
m The USB-TTL conversion is NOT just a logic level conversion !

m Waveforms on the USB lines use a different speed, include USB host/device
arbitration, multiple devices on the same bus etc

m The USB-TTL chip (CH340) is a complex integrated circuit
m You should ONLY view the TTL waveforms on the RXD, TXD pins.

"
USB- TTL adapter

UL +5Y

a L 16 i DLH D2H
Z¢—-L1 GND vee
Cont L i 2 2 | Txb RS232 3¢ LL414B LLA4148
i [Ra0) 2 RxD RTS -2 . y t
Ev— 3V TR H3x JEG
D= D+ DED =2
L X 6 1p Rl FLlx 03 10Gn? E E e CON2
GND 2 c1 7 ' i B DSR L0 «
GND -0 e Y - 1 B | %o g 2 x [LED L
10u? 1100n? 1100n? 12MHz o L g D4 L egD5 B :|
‘l_‘ - -
USE il — | | . CH3406 H . LED LED .?_é. f
GND GND GND GND s o) =2 D: : 5
22p7? 22p7 o 6
p’ pr f
PIN—1x6
GND GND GND GHD

m The schematic of the USB-TTL adaptar is shown for reference
m D1,D2 are used to lower the 5V voltage to 3.3V (5-0.7-0.7V)
m The jumper on pins 1-2 shorts these diodes so the full 5V is supplied on pin 2

m The 3.3V -5V jumper should be placed on 5V UNLESS you explicitly modify your
own board for 3.3V operation

m Plug the USB-TTL adapter into the PC —a new COM Port (called a ,virtual” COM
port) will appear (usually COMS or higher)

7

" J
Waveform viewing on the scope

m worth 10% of your grade !

m 10 bits - 1/9600 sec/bit = 1Tms
m 10 divisions on the x axis = 1 bit = 1 div (horizontal)
m 1 bit/div > Cy = 0.1 ms/div

m C, =5V/div=1div (vertical) for TTL
m [rigger slope = falling slope =for TTL

m Why ? see the TTL waveform on the previous page

m Look for the C,, C,, trigger settings on the scope !

" S Using an analog scope
27

6 8 7 18 19 .

20
5 16

AR MODE SELEXT
4Bm SELER ;n DIV -
AJTO ﬂﬂm
MA‘IUM Em RE
voLf
X Zapo¥iTIONT TRIG('

CARSE FINE

READY e
En&sv UNE” AELD

B HOLDOFF

"lllﬂ

2

74N s /. A" (& '
9 10 / / / 24 25 26

11 1 13 14 17
15

G, [V/div] = setting 10; C,[sec/div] = setting 14; Trigger Slope=setting 19 9

- — Using a digital scope

T = Trigger moment, by default on the CENTER of the screen

T

RIGOL STOP - frommamm i o ¥ ﬂ 1. 52

m Using the Horizontal Position knob you should move the trigger moment ﬂto the
left of the screen in order to see the bits as described

m Note some scopes have more than 10 horiz. divisions (above: 12 divisions)
10

" J
Powering the board via USB

m You can power via USB and eliminate the need for an external power source
on CN3; for this, you must properly select J1

D U3 LMTEI5 - F Ir plus, trebuis adaugat

TN4D01) 3 .I_.___T_}I.E'" VeclUSE 1205L038 =.l.-|-.=_|".-':=_..]:-ili==.t-l:-r de 3.3V meparat
E 1 VIN _ vOUT T o ="
2 _l_ E _|_ —lealen Polyfuse 0.252 = 1 57
Z
CH2 — = —_ 3 3V
CONZ_254 - C16 “"T“"'T - ”T“T"
Alimentare C3T 1 100n J1 Jumper CNZB
1030n — J1 1-2: alimentarse s=xterna COM3_254

J1 2-3: alimentare din 0SB OZE Fower

m The schematic of the power section of your board is above; Vcc is the power
pin of the uP and all other components
J1 =1-2 : external power
J1 =2-3 : USB power
m F1 must pe soldered (either a 1206 Polyfuse or a simple wire can be used)
m Either CN2B going to the USB-TTL adapter must be used, OR the ,USB
Type B” connector CNS.

11

Powering the board S HEESE
via USB using the UsBTTL
USB-TTL adapter Tl < e

You must use 6 wires for CN2
and CN2B, not just 3 wires for
data |

You connect 6 wires to all 6 pins |
of the USB-TTL adapter - ————— S O

Your Board

Now you don’t have space to put Tedeal <o There is a
the yellow jumper on the USB- connection
TTL adapter ! between =~3

P : on the back
To solve this, there is already a 0 s of the

. e .
connection between 2 and 3 of & : board
CN2B on your board CN2 55 CN2B

y USB data USB Power

If you decide to power your board with 3V, you must cut the connection
between 2-3 and solder a wire between 1-2 of CN2B 12

" J
Serial port communications

m 2 useful applications of the serial port
bootloader, for loading the application (see later)

debugging using the serial port: on the PC, use a Terminal
program (e.g. Windows HyperTerminal, or the terminal in
CodeVision) which becomes a terminal for your PCB
(extends the PC’s keyboard and screen as if it were your
PCB’s keyboard and screen)

13

" J
Programing an application
input files: *.c, *.h, etc

output file: *.hex (the format is called Intel HEX but is not
used only on Intel)

1. classical programming: the uC is taken off the board and
plugged in a dedicated programmer

2. In-system programming: the uC remains in its socket and the
ISP connector is used to connect to an external programmer

3. bootloader programming: the boot loader is a special
program, similar to an operating system, preloaded in the uC
(using method 1 or 2 but only once), which accepts the
application program via a serial port (or USB, ethernet, etc)

Bootloader disadvantages: written for a specific processor and
clock; needs a button on PORTD.5; doesn’t run on Linux.

14

3. Program loading into the uC using

bootloader/PCLoader
m Boot Loader = a program already loaded into the uC, before |
give you the chip

m PC Loader = runs on the PC (Windows)
m they use the serial port for communication

m Boot Loader = equivalent of a micro-OS
only function: application loading

Boot Loader is loaded at the top of the memory and cannot be
overwritten by the application

m the uC’s Flash memory contains the Boot Loader and the
application program
no multitasking = the 2 do not run simultaneously

m the Boot Loader runs at power-up (or Reset) if the button is
pressed; else the application runs. .5

"

PC Loader = AVR Buster

- AVR Buster
— Connection—— — File
Com1 = | Browse
m HEX File W Binarn File |
Address: —
& Tx @ P ess[0 =
Start Upload
— Target [nformatian
Check Target E it

Select the COM port
Only COM1 to COM4 can be used

If using the USB-TTL, the virtual COM can be sometimes greater than 4
To solve this, use Windows Device Manager, serial port, Advanced

properties and select a lower COM (even if it says ,in use”)

16

" A
Use of the AVR Buster

1. Select COM1 or COM2 for RS232 ports (physical ports on the
back of the PC)

2. Select COM3 or higher for USB virtual ports

3. Using Browse load the .HEX file to be uploaded (do NOT load
a .c or .h or .prj file — only HEX are executables!)

4. Start Upload

5. power up the board while holding the button (OR reset the
board while holding the button); the LED will not blink, since
this is an application function

6. Error message “Error Accessing COM Port” = another
program (typically, Code Vision) is using the port; use
Disconnect in the Code Vision Terminal 17

.._chematic — you assemble it on your board

FD1{TxD)
FD2{INTJ)
FD3{INT1)

VGG
T WCC i
CH U1
CON&a O—— PBO(TOVCK) (ADD)PAD 23—
R =z O—3 | FE1(T1) (ADT)PAT —ap—T
T MISO a1 2 [5—MOS| - O—5 PEZ{INTZ/AIND) (ADZ)PAZ F55—O
SCK —: 4| O—2— PEZOCHAINT (ADZ)PAZ o0
- =15 & C—=— PE4(ES) (AD4)PAS [H5e—0
ISE MoS 7| FESMOS) (ADSIPAS 520 - s
e —= = MISO 5| PEB(MISO) (ADE)FAE 332 Jp0nE
C SCK FET(SCK) (ADTIPAT Faa—0
uF 5 | EETIEC ¥
L VCCo— oo GND I
N VW2 '|| s H GMD AVrco % -
okl T KTAL TOSCZPCT o Wt
j] TALS TOSCT)PCE [H5—0
FDO[RD) TDIFCSE O

(TDOWPC4 5O
TMEPCE 50
TCHPCZ 50

P4 {OC1B) (SDAFCT O
F n F'E':-":"" A (SCLPCO 53—
e PDE(ICP1) (oC2)PDT 20
| I:I ; ATmega16-DIL4D
| | Rz VYCG Comex.1-2 de la CH?E se taie
E_-'? E_?' o 330R "'r'E'E "'r'E'E T daca placa == toece pe 337
:_l:-ﬂﬂF'F LﬂF'F:_l: S oz - | cd =i == fare
B B v - CE J— J— - q-.:,L conexiunea 2-3 in =chimb
S . LED :: | | |
OSER, . - = = In plus, trebuie adawgat
| stabilicator de 3.3V separat

m the power section was shown on a previous slide and it provides Vcc

m the ISP connector is for an optional external programmer (not needed since we have the ppot
loader)

S T TITR T

.IIIIIIIIII.IIIIIIIIII
A A 2222 2 E R R 2 LR R LR R

Top layer

Circuit layout

S e mfs

B = v 3 Tioson

...

. X A E X E R E NN XX NNXNZJE XN
-
.

Bottom Layer

a8e
@

s&e
LR 1
s&e

-
<

ol 0 I/0 Pins used as inputs and outputs
m Input pins:

Initialize with DDRX.Y =0

Set PORTX.Y = 1 to enable the internal pull-up resistor

By default, set PORTX.Y = 0 (no pull-ul resistor)

Read value using PINX.Y

Example:
If(PIND.5 == 0) // read switch connected on D.5
LED = 1

m Qutput pins:
Initialize with DDRX.Y = 1

Write value using PORTX.Y
Example:
PORTD.6 = 1 // light up LED connected on D.6
m Note: you can access all 8 pins of a port at a time:

PORTD = 0b11101011
20

1/0 Port schematic for inout

'3

pu

+ Logic

See Figure 23
"General Digital /O" for
Details

AL
A

m A port pin used as an input
= You can enable the pull-up resistor (R,,,) in software

m Example: PORT D.5:
DDRD = 0b00000000 // Direction register; 0 = input
PORTD = 0b00100000 // 1 on an input pin = pull-up enabled ,4

" A
Interrupts

m External interrups: the are called when:
a certain pin becomes 0 or 1
a character is received on the serial port, etc

m Internal interrupts:
a timer register reaches a certain value (a certain time is reached)
an A/D conversion is ready, etc

m See datasheet for a complete list for the AT Mega 16

m in the software, an interrupt is serviced by a C function called ISR (Interrupt
Service Routine)

m See the test program for an example using the timer interrupt

22

" J Timers

Timer 0,1,2
8 bits or 16 bits
source: internal or external clock, with or without prescaler
Many operating modes, see the datasheet for full details
example: Timer1 in CTC mode (Clear Timer on Compare Match)
the selected clock source increments the timer
the current value is held in TCNT1 (starts at 0)

when TCNT1 = OCRAT1, an interrupt is issued and the timer is reset

by choosing OCR1A and the clock frequency, the timer can be programmed for
any time interval

dt is the clock period divided by the
prescaler you choose

Timerl Reset |_|
Timerl Int rl

Timer calculations

m How do | set the value of a control register ?
m The next tables are taken from the datasheet.

m RTFM ! (Read The Fine Manual) - the At Mega 16 datasheet, available
either on Atmel’s site or at:

http://ham.elcom.pub.ro/proiect2/files/atmegai6.pdf

m Prescaler. frequency divider, having a fixed set of values (e.g. 8, 64, 256,
1024); setting the prescaler changes the dt (basic timer interval, equal to the
minimum amount of time).

m example: we want to program a 1-second interval using Timer1: look at the

blue arrow:
24

" JE
7 &
WGM10 | TCCR1A

ONTA
R Rw Raw R W W R

k]

Registers for Timer/Counter 1

4 3 2 1

]

RW
7 i)] 4] 2 1]
ICNC1 IEES‘I - WEiI'.'I‘IE WE‘:‘.MH {'iS‘IE (1511 (:_Sm TCCR1B
RW RW R RW AW RW AW RAW
WGM12 | WGM11 WGM10 Update of TOV1 Flag Set
Mode | WGM13 | (CTC1) | (PWM11) | (PWM10) | Timer/Counter Mode of Operation | TOP OCR1iX on

0 0 0 0 0 Mormal OxFFFF | Immediate MAX

1 0 0 0 1 PWM, Phase Correct, B-bit Ox00FF | TOP BOTTOM

2 0 0 1 0 PWM, Phase Correct, 9-bit Ox01FF | TOP BOTTOM

3 0 0 1 1 PWM, Phase Correct, 10-bit Ox03FF | TOP BOTTOM
—> 4 0 1 0 0 CTC OCR1A | Immediate MaX

5 0 1 0 1 Fast PWM, 8-bit Ox00FF | BOTTOM TOP

8 0 1 1 0 Fast PWM, 9-bit Ox01FF | BOTTOM TOP

7 0 1 1 1 Fast PWM, 10-bit Ox03FF | BOTTOM TOP

3] 1 H] 0] 0 PWM, Phase and Frequency Caorrect | [CR1 BOTTOM BOTTOM

4] 1 H] 0] 1 PWM, Phase and Frequency Correct | OCR1A | BOTTOM BOTTOM

10 1 0 1 0 PWM, Phase Correct ICR1 TOPR BOTTOM

1 1 0 1 1 PWM, Phase Correct QCR1a | TOP BOTTOM

12 1 1 0 0 CTC ICR1 Immediate MaX

13 1 1 0 1 Reserved - - -

14 1 1 1 0 Fast PWM ICR1 BOTTOM TOP

15 1 1 1 1 Fast PWM OCR1A | BOTTOM TOP

" J Timer/Counter 1

CS12 CS11 C510 Description
0 0 Q Mo clock source (Timer/Counter stopped).
0 0 1 clkye/1 (Mo prescaling)
0 1 0 clky'd (From prascaler)
0 1 1 clky64 (From prescaler)
1 0 0 clkyo/256 (From prescaler)
1 0 1 clkye/1024 (From prescaler)
1 1 0 External clock source on T1 pin. Clock on falling edge.
1 1 1 External clock source on T1 pin. Clock on rising edge.

we want 1 s = low frequency

Example: g qia =13.5MHz—division by 13,500,000 > 65536 (16 bits) —
impossible

we need the prescaler to divide some more

prescaler: max divisor = 1024; 13.5MHz /1024 = 13.184KHz

we want 1Hz: we div ide again by 13184 = 3380h

OCR1AH = 33h, OCR1AL = 80h

we select the CTC mode; let’s set the remaining registers

from the 2 previous tables: TCCR1A =0 and

TCCR1B= 00001101 = 0Dh

26

" Good News !

x
File Help
USART | Analog Comparator | 4DC | 5P
2. | twie | 2wie(2g)
LCD I Bit-B anged I Project Infarmation

Chip | Pots | EstemallRg Timers

Timer 0 Timer 1 |Timer2| Watchdngl

Clock Source: | System Clock |

Clock Walue: 13.184 kH= |

Mode: |CTC top=0CFR14

Out, A | Dhscon. "I ik, EIDISEDH ""'.

Input Capt. Zﬂ- Moize Cancel]
.|

=T SR ™l [orpare & Match

Walue: 1] h [np. Capture: |0 h
Comp. &: |0 h E:IEI h

m All these calculations can be done using CodeWizard

m You still need to read the datasheet for the explanation of the different
modes 27

" PWM Mode

m the PWM mode: useful for setting the speed of a motor or the light intensity
of a light source

m example: use of the timer/counter0 in PWM mode to set the intensity level

ofa LED | TCNTOmax (255 pt. 8b)
TCNTO
OCRO
- T1 S
T2 Pin OCO. i {
| >t L
TPVWM.: "
TPWM

TPWM is fixed; should be short enough to avoid flicker — if you choose a flicker-free
frequency of 200Hz, then TPWM= 1/200Hz = 5ms

T1 < T2; the longer this interval, the longer you keep the LED on

connect the LED to pin OCO so it is turned on automatically when TCNTO< OCRO and
turned off when TCNTO >= OCRO

by changing the value OCRO, you change T1 and the intensity changes 28

" A Timer/Counter 0 Control Register

Bit 7 6 5 4 3 2 1 0
recm
Fead Write W R/W R/W RW RW AW AW AW
Initial Value 0 0 0 0 0 0 0 0
csoz2 csin CS00 | Description

0 0 0 Mo clock source (Timer/Counter stopped).

0 0 1 clky;o/(No prescaling)

0 1 0 clk,o/8 (From prescaler)

0 1 1 clk,/64 (From prescaler)

1 0 0 clk,o/256 (From prescaler)

1 0 1 clk;o/1024 (From prescaler)

1 1 0 External clock source on TO pin. Clock on falling edge.

1 1 1 External clock source on TO pin. Clock on rising edge.

29

How to calculate the PWM frequency

m PWM — the frequency is constant, the duty cycle varies

m Example: assume f g, = 13.5MHz
m We divide by:
prescaler: max 1024
maximum value for the 8 bit timer register: 256

we have foyy = 13500000/1024/256 = 51 Hz

Note: 51Hz is enough for light bulbs or motors, but a 51Hz flicker is visible on
LEDs

we choose a lower prescaler: 256
fowm = 13500000/256/256 = 205 Hz

Prescaler=256 — CS02:00 = 100 (see previous table)
30

Timer/Counter 0 Control Register

Bit 7 G i 4 3 2
(o e [[[T [o [[Een] ocre
Read Write RW RAW RAW R RAN
Initial Value 0 0 0 0 0 0
WGMO1 | WGMO00 | Timer/Counter Mode Update of | TOVO Flag
Mode | (CTCO) | (PWMO) | of Operation TOP OCRO Set-on
0 0 0 Normal 0xFF Immediate | MAX
1 0 1 PWM, Phase Correct 0xFF TOP BOTTOM
2 1] CTC OCRO | Immediate | MAX
3 1 1 Fast PWM 0xFF BOTTOM MAX
COMO1 COMO0 Description
0 0 Normal port operation, OCO disconnected.
0 1 Reserved
1 0 Clear OCO on compare match, set OCO0 at BOTTOM,
(non-inverting maode)
1 1 Set OCO on compare match, clear OC0 at BOTTOM,
(inverting mode)

m table COM 01:00 is for the Fast PWM mode

m we choose WGM 01:00 = 11, COM 01:00 = 10 CS 02:00 =

m the final value is: TCCRO =01101100 = 6Ch

31

m CodeWizard again

CodeWizardAVR - untitled.cwp [X|

File Help

USART | Analog Comparator | ADC | 5P
2. | twie | 2wie(zg)
LCD I Bit-Banged I Froject Information

Chip I Ports I External IRQ Timers

Tirner O | Timer 1 I Timer EI Watchdngl

Clock Source: | System Clock d

Clock W alue: 13.184 kH=

Mode: |Fast P'w'M top=FFh

|4

Cutput: | Mon-lnverted Pt

| 4

[Overflow Intermpt
[Compare Match Intermpt

Timer%alue: |0 h

Compare: 0 h

Good news !

32

" J
Sample program in PWM mode

/[timerQ init in PWM

// Clock source: System Clock/256, Clock value: 52734 Hz, Mode: Fast PWM top=FFh, OCO: Non-
Inverted PWM

TCCRO0=0x6C;

TCNTO0=0x00;

OCRO0=0x00;

// in PWM mode the OCO pin is changed automatically so we don’t need a timer interrupt !

/I 4 different light intensities for LED, set using 4 different values of the OCRO register
// pause 1 second between each intensity change
void main (void)

{

while(TRUE)

{
OCRO = 0; delay_ms(1000); // no light
OCRO = 4; delay_ms(1000); // little light
OCRO = 16; delay_ms(1000); // medium light
OCRO = 253; delay_ms(1000); // full light

" A
Sensors

m Digital sensors (TTL)
examples: contact switches, magnetic switches, optical switches, etc
states: LO and HI (only 2 values)
read on an input pin (PINX.y, not PORTX.y)

you may user a pull-up resistor so the Hl state is default; pull LO by connecting
the pin to ground - see the first circuit

internal pull-up: activate using PORTX.y=1 when the direction is set to “input”
(DDRX.y=0)

use the same for analog sensors, when you need to detect the crossing of a
treshold

m Analog sensors
many values (8 bits = 256 values; 10 bits = 1024 values)
use the internal A/D converter
8 channels are built-in so you can read 8 separate inputs

34

Analog example: light sensor

R
STy
IF' vDLI_ |:|F'E|5C;'
I FVee = - R,
O
*—\
e
OoP > .
. - Y
VAV P OVour
— 5 Ey
—Veo

7

m AO =1/2 LM358 (-Vcc = 0V, +Vcec = +5V)
m The photodiode is reverse biased so we measure its dark current
m R1=tensof KQupto 1M Q

35

The Analog to Digital Converter (ADC)

10-bit Resolution

0.5 LSB Integral Non-linearity

+2 LSB Absolute Accuracy

13 - 260 pys Conversion Time

Up to 15 KSPS at Maximum Resolution

8 Multiplexed Single Ended Input Channels

7 Differentlal Input Channels

2 Differential Input Channels with Optional Gain of 10x and 200x'"
Optional Left adjustment for ADC Result Readout

0 - Ve ADC Input Voltage Range

Selectable 2.56V ADC Reference Voltage

Free Running or Single Conversion Mode

ADC Start Conversion by Auto Triggering on Interrupt Sources
Interrupt on ADC Conversion Complete

Sleep Mode Noise Canceler

m Specifications: Successive aproximations type
m kSPS = kilo Samples per Second
m Control registers: ADMUX, ADCSRA

36

" ADC

Bit 5 2
REFS1 ADLAR | MUX4 MUX3 | MUX2 [MUXi MU X0 ADMUX
Raad Write RAW = W = RAW RAW RW =
Initial Value 0 0 0 0 0 0 0 0
Single Ended
REFS1 | REFSO | Voltage Reference Selection MUX4..0 | Input
0 0 AREF, Internal Vref turned off 00000 ADCO
0 1 AVCGC with external capacitor at AREF pin 00001 ADC1
'1 |:| Hesewed E":]D1':| ADGE
i 1 Internal 2.56V Voltage Reference with external capacitor at AREF pin 00011 ADC3
00100 ADC4
m REFS: choose the reference 00101 ADCE
m differential modes also exist; 00110 ADCS
m ADLAR = AD Left Adjust Result 00111 | ADC7

use ADLAR=1 if only 8 bits are needed; read only ADCH, containing the most
significant 8 bits;
if you need 10b — ADLAR=0, read ADCH, ADCL
careful with the analog part if you want to use 10b !
m Input pins are ADO to AD7 (on AT MEGA 16, pins 40 downto 33)

37

_ ADC

Bit 5 3 1

R mm TP T RO T ROPET] avcsns
Read/Write RW R/W RW RW RW RW RW
Initial Value 0 Q 0 0 0 0 0 0

ADEN = ADC Enable

ADSC = ADC Start Conversion; set to 1 to start a conversion in Single Conversion
mode; in Free Running mode, set to 1 at the beginning

ADATE = ADC Auto Trigger Enable; is used together with SFIOR

ADIF = ADC Interrupt Flag; becomes 1 when the conversion is ready; automatically
becomes 0 if the ADC ISR is executed (if ADC interrupts active)

ADIE = ADC Interrupt Enable; also must set bit “I” in SREG

ADPS 2:0 = prescaler for the ADC clock (= Crystal clock/prescaler)

[ADPs2 | ADPs1 | ADPSo | Division Facter |
0 0 0 2
0 0 1 2
0 1 0 4
0 1 1 B8
1 0 0 16

:
1 1 0 &4
1 1 1 128 38

" e

"
5| FBO(TOMXCK) ~ (ADO)PAD - = Ux
=1 PB1(T (AD1FAT 2=
= PE3(DCOAIN (ADI)PAZ [5g—F B
g | FB4SS) (ADA)PA4 35—
= PBS(MOSI) (ADE)FAS [—H
5| PBA(MISO) (AD&PAS [., N
5| ERIS0K) (ADTIPAT |—= :..rnl I R11
= S Iy =] = 3-’- }..,FF R — ‘_d:_.._
o | RESET AREF |2 5
[e GND |5 I vee

12 | 20 AYEC " ap G ——
‘ - - <2 — =
13 | XTAL (TOSC2)PCT [53—= =

14_| XTAL (TOSC1)PCE 78

=& PD1(TxD TDOWPC4 |5e—8

—7| PD2(INTO TMS)PC2 f; o

8] FD3(INT1 TCKPC2 [H57—=

E] PD4 (OC1B EE:*F:' = £l

5| FDS(OC1A (SCLIPCO [-57—H

| POO(ICP1 oc2pp? -8

ATmega18-DIL40
m Example: measuring a voltage larger than the reference voltage using the ADC
m R10, R11 form a divider which reduces Ux with the ratio K = 2.2/ (22+2.2) = 0.0909
m ADO will read a voltage UO corresponding to a number N (assuming 10 bits)
U0 /2.56V =N/ 1024
m (we assume that you select the Uref=2.56V which is more precise, using REFSO0,1)
m thus, you calculate Ux in the software:
Ux =256V /1024 *N /K or Ux =0.0275 N [V]
m if you use only 8 bits:
Ux =2.56V /256 *N/K or Ux=0.11 N [V]
m (5 is optional, however it filters noise, by forming a LPF with R10.

39

" A Example use of ADC in Single conversion mode

#define ADMUX_NOCHANNEL 0b00100000 // see below ADMUX initialization

void init_adc(void)

{

// ADCSRA initialization; in order from MSB:

// 10 = enable ADC, do not start a conversion yet

// 0 = disable free-running mode

// 10 = clear ADIF interrupt flag, disable ints

// 101 = ADC clock =XTAL/32

ADCSRA=0b10010101;

// ADMUX initialization

// 11 = internal VREF=2.56V ***OR*** 00=AREF= external reference on AREF pin
/1 =ADLAR=1 (left adjust, use only 8 bits)

// the rest: channel selection

ADMUX=ADMUX_NOCHANNEL; // external AREF, ADLAR=1

}

// channel can be 0 to 7;
float read_voltage(byte channel)

{

channel &= 0b00000111; // 8 channels are possible
ADMUX = ADMUX_NOCHANNEL | channel;

ADCSRA |= 0b01000000; // start conversion

while (ADCSRA & 0b01000000); // wait for result in ADIF flag
ADCSRA |= 0b00010000; // clear ADIF flag

return 0.11 * (float) ADCH; // return value directly in volts

] 40

